
SRB Measures of Almost Anosov Diffeomorphisms
Dynamics Working Seminar

1 Definitions and main results

M is a C∞ 2-dim. compact Riemannian manifold (∂M = ∅), m = dVg.

Definition 1. Let f be a Cr diffeomorphism, r > 1. A compact invariant set Λ ⊆ M is almost hyperbolic
if ∃ two continuous invariant families of cones x 7→ Cux , Csx of the tangent bundle TΛM such that, except for
a finite set S ⊆ Λ,

• DfxCux ⊆ Cufx and DfxCsx ⊇ Cufx;

• |Dfx(v)| ≥ |v| ∀ v ∈ Cux and |Dfx(v)| ≤ |v| ∀ v ∈ Csx.

If Λ = M , then f is almost Anosov.

We assume that S is invariant, and consists of fixed points. In most examples of almost Anosov systems,
we further assume S = {p}.

Example 1. The Katok map is an almost Anosov diffeomorphism.

It follows from continuity of the cone decomposition that f is uniformly hyperbolic away from p, ie. for
any r > 0, there are constants Ks ∈ (0, 1) and Ku ≥ 1 so that, for x 6∈ B(S, r),

|Dfxv| ≥ Ku|v| ∀v ∈ Cux ,
|Dfxv| ≤ Ks|v| ∀v ∈ Csx

However, it is possible that |Dfxv|/|v| → 1 as x→ p. We want to control the speed at which this happens.

Definition 2. An almost Anosov diffeomorphism f is nondegenerate if there are constants r0 > 0 and
κu, κs > 0 so that for x ∈ B(S, r0),

|Dfxv| ≥
(
1 + κud(x, S)2

)
|v| ∀v ∈ Cux ,

|Dfxv| ≤
(
1− κsd(x, S)2

)
|v| ∀v ∈ Csx

Broad question in nonuniform hyperbolicity and thermodynamics thereof: whether certain maps (or
classes of maps) admit SRB measures.

In a way, almost Anosov systems are the “most mildly nonuniform” maps, so they’re a good class of maps to
construct examples and identify specific cases for. That said, the thermodynamics can be quite complicated
(as we know from studying the Katok map).

Example 2. Suppose we have a topologically transitive diffeomorphism f on a Riemannian 2-manifold M
with a fixed point p so that:

• there is a constant Ks < 1 and a continuous function Ku so that Ku(p) = 1 and Ku(x) > 1 for x 6= 0,
and

• a decomposition TxM = Eux ⊕ Esx at every x ∈M so that

|Dfx(v)| ≤ Ks|v| ∀v ∈ Esx,
|Dfx(v)| ≥ Ku(x)|v| ∀v ∈ Eux ,

and |Dfp(v)| = |v| for v ∈ Eup .
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(e.g. you could take a hyperbolic toral automorphism and deform it near the origin.) In this case, f does not
admit an SRB measure. However, it does admit an infinite measure µ with positive Lyapunov exponents
µ-a.e., absolutely continuous conditional measures on (weak) unstable manifolds, and µ(M \ U) < ∞ for
every open neighborhood U of the origin.

We call such a measure an infinite SRB measure. (Without qualification, “SRB measure” means a proba-
bility measure.) Allowing this extension, we are able to make some broad statements about thermodynamics
of almost Anosov diffeomorphisms with indifferent fixed points, that is, fixed points with Dfp = Id.

Theorem 1. Every topologically transitive C4 nondegenerate almost Anosov diffeomorphism on a 2-dimensional
manifold M admits either an SRB measure or an infinite SRB measure.

Corollary 1. If µ is an SRB measure, then 1
n

∑n−1
i=0 δfix → µ for m-a.e. x. On the other hand, for infinite

SRB measures with S = {p}, we have 1
n

∑n−1
i=0 δfix → δp for m-a.e. x. For more general singular sets S,

for any open neighborhood U of S,

lim
n→∞

1

n
#
{
k : fkx ∈ U, 0 ≤ k ≤ n− 1

}
= 1 m-a.e. x ∈M

As is typical with nonuniformly hyperbolic systems, we denote the local stable and unstable manifolds
W s
ε (x) and Wu

ε (x) in the usual way:

Wu
ε (x) =

{
y ∈M : d

(
f−ny, f−nx

)
≤ ε ∀n ≥ 0

}
and W s

ε (x) is defined similarly. It turns out both Wu
ε (p) and W s

ε (p) are differentiable, with {p} = S. But
we make a further assumption for a classification theorem, which is that Wu

ε (p) and W s
ε (p) are C4 curves.

Lemma 1. Under these assumptions (nondegeneracy, S = {p} is a fixed point, Dfp = Id), D2fp = 0.

So there’s a coordinate system so that in some neighborhood of p, we can write f as

f(x, y) =

(
x
(
1 + ϕ(x, y)

)
, y
(
1− ψ(x, y)

) )
for (x, y) ∈ R2, with

ϕ(x, y) = a0x
2 + a1xy + a2y

2 +O(|(x, y)|3),

ψ(x, y) = b0x
2 + b1xy + b2y

2 +O(|(x, y)|3)

Theorem 2. Let f be a topologically transitive almost Anosov diffeomorphism on M with S = {p}. Assuming
Dfp = Id and Wu

ε (p), W s
ε (p) are C4 curves, with the above coordinate system, we have:

(i) If αa2 > 2b2 for some 0 ≤ α ≤ 1, a1 = b1 = 0, and a0b2 − a2b0 > 0, then f admits an SRB measure.

(ii) If 2a2 < αb2 for some 0 ≤ α ≤ 1 and a1b1 6= 0, then f admits an infinite SRB measure.

By nondegeneracy, a0, a2, b0, b2 > 0. So the conditions in part (i) of this theorem imply ϕ > ψ near p.
On the other hand, the conditions in part (ii) imply ψ > ϕ near the y axis in some quadrants.

As mentioned, if one of the eigenvalues of Dfp is < 1 and the other is = 1, then there is an infinite
SRB measure; this suggests that if expansion is “weaker” than contraction, then we get infinite SRB. So our
classification theorem confirms this trend: if ϕ > ψ, then expansion is stronger, and we get SRB probability
measures. But if ϕ < ψ, then expansion is weaker, and we have infinite SRB measures.

2 Existence of SRB measures

A major component of the argument for the existence of SRB measures involves showing (M,f) has local
product structure at the origin. Therefore, we can talk about rectangles (in the Markov partition sense),
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that is, closed sets R ⊆M such that whenever y, z ∈ R, [y, z] := Wu
ε (y) ∩W s

ε (z) ∈ R.

Notation: Suppose γu and γs are segments of Wu and W s-leaves respectively. Then we denote the rectangle:

[γs, γu] := {[y, z] : y ∈ γs, z ∈ γu}

(Note: [Hu] defines this as [γu, γs] instead, but I’m reasonably sure this is a typo; defined in this way, it
seems [γu, γs] would only have one point, clearly not a meaningful rectangle.)

Lemma 2. There exist curve segments γs ⊆W s(p) and γu ⊆Wu(p), with p in the interiors of both γu and
γs, so that the rectangle P = [γs, γu] satisfies:

• ∃ compact Ŵ s ⊆W s(p) with fŴ s ⊆ Ŵ s, ιs∂sP ⊆ Ŵ s, and
(
Ŵ s \W s(p, P )

)
∩ P̊ = ∅;

• ∃ compact Ŵu ⊆Wu(p) with analogous properties (with f−1 instead of f).

Moreover, γu and γs may be chosen so P has arbitrarily small diameter.

This follows from density of Wu(p) and W s(p).

Lemma 3. There is a g-invariant Borel probability measure µ, where g = fτ : M \P →M \P and τ = τ(x)
is the first return time for x ∈ M \ P , so that µ has absolutely continuous conditional measures on the
unstable manifolds of f .

Proof. To construct µ, let P+ be a component of fP \P , x ∈ P+, and L = Wu(x, P+) = Wu(x)∩P+. Let

mL be the Lebesgue measure on L, and let µ be any weak* accumulation point of
1

n

n−1∑
i=0

gi∗mL.

Absolute continuity follows from the following distortion estimate: ∃δ > 0, Ju > 1 depending on P , so
that if γ is a Wu-seg. with `(γ) ≤ δ, γ ∩ P = ∅, then ∀x, y ∈ γ and ∀n > 0,

J−1
u ≤

∣∣∣Df−ny |Euy ∣∣∣∣∣Df−nx |Eux ∣∣ ≤ Ju.
This follows (nontrivially) from what Hu refers to a the local Hölder condition: ∃H > 0, θ > 0, r∗ > 0 so
that ∀x ∈M \ {p},

d
(
Eux , E

u
y

)
≤ H

ρ3θ
x

d(x, y)θ ∀y ∈ B(x, ρ3
x),

where ρx = min{|x|, r∗}.

Proving this lemma is the major obstacle presented by almost Anosov maps as opposed to Anosov maps.
The idea is to take cones C̃u and C̃s, in which live the eigenvectors of D3fp(x, x, ·), and to define a coordinate
system using these cones and various estimates involving the unstable submanifolds. One then shows in this
coordinate system, Dfp contracts angles between vectors in C̃u.

To construct the (possibly infinite) SRB measure, let Q0 = M \ P , Qi = {x ∈ M \ P : fx, . . . , f ix ∈
P} ∀i ≥ 1, and define

µ =

∞∑
i=0

f i∗ (µ|Qi)

Since µ has absolutely continuous invariant measures on unstable manifolds, so does µ. If this series con-
verges, µ(M) <∞, and we normalize to SRB.

OTOH: If the series diverges, µ is σ-finite. Indeed, if U ⊆ P is any open set containing p, then there

is some large n for which M \ U ⊆ M \
( n⋂
i=−n

f iP
)
. This set has nonzero measure for only finitely many

f i∗ (µ|Qi), so µ(M \ U) <∞. So µ is an infinite SRB measure.
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One can use Hopf’s argument to demonstrate that (M \P, µ, g) is ergodic. It’s straightforward to extend
this argument to show (M,µ, f) is ergodic for µ(M) <∞.

We would also like to develop some “ergodic” properties when µ(M) = ∞; namely that
1

n

n−1∑
i=0

δfix → δp.

First, we need to demonstrate that the stable W s foliation is locally Lipschitz away from p.

More precisely, for any rectangle P = [Wu
r (p),W s

r (p)], we need to show there are constants L > 0 and ε > 0
such that ∀x ∈M \ P , with [Wu

ε (x),W s
ε (x)] ∩ P 6= 0, and ∀z ∈W s

ε (x), the sliding map ι : Wu
ε (x)→Wu(z)

is Lipschitz with Lipschitz constant L. This follows from the continuity of x 7→ Eux , E
s
x away from p coupled

with the distortion estimates

J−1
u ≤

∣∣∣Df−ny |Euy ∣∣∣∣∣Df−nx |Eux ∣∣ ≤ Ju, y, z ∈ γ ⊂Wu(x) \ P, x 6∈ P ;

and

J−1
s ≤

∣∣∣Df−ny |Euy ∣∣∣∣∣Df−nx |Eux ∣∣ ≤ Js, y, z ∈ γ ⊂W s(x) \ P, x 6∈ P.

i.e. if γ is a seg. of an unstable leaf Wu
ε (x), one can show `(ιγ) ≤ L′JsJu`(γ), for some L′.

To prove the desired weak* convergence, we show that given small α > 0, ε > 0, there are neighborhoods
P2 ⊆ P1 of p with diamP1 ≤ α such that for m-a.e. x ∈M \ P2,

#
{
k : fkx ∈M \ P1, 0 ≤ k ≤ n

}
# {k : fkx ∈ P1 \ P2, 0 ≤ k ≤ n}

< ε.

That is, a.e. x ∈ M spends almost 100% of its time in an annulus of small radii around p. To do this, we
let P1 = [W s

β(p),Wu
β (p)] for a small β, and let P2 be small enough so that µ(M \ P1) ≤ εµ(P1 \ P2). One

can now prove invariance and ergodicity of the map g2 : (M \ P2, µ2) → (M \ P2, µ2), where µ2 = µ|M\P2
.

Applying the Birkhoff Ergodic Theorem to (M \ P2, µ2, g2) gives the desired result.

This again makes sense in the context of the notion that “weaker expansion =⇒ infinite SRB”. Indeed,
in this case, m-a.e. points in M spend almost all of their time near the singular fixed point p.

3 Unstable submanifolds

The major piece of the analysis that makes this notably harder than with fully Anosov systems comes in
proving basic topological properties of Wu(x) and W s(x)-foliations. This boils down to performing certain
estimates on the linear map Id + 1

2D
3fp(x, x, ·) : TpM → TpM .

Proposition 1. There is an invariant decomposition of the tangent bundle into TM = Eu ⊕ Es such that
Eηx ⊂ Cηx and DfxE

η
x = Eηfx, η = s, u. Except at the singular fixed point p, the decomposition is continuous.

Proof. The construction of TM = Es⊕Eu is standard on M \{p}, as is the proof of continuity. For Esp⊕Eup ,
the construction is more involved.

Lemma 4. There are constants 0 < r̃ ≤ r0, 0 < κ̃u ≤ κu and 0 < κ̃s ≤ κs, cones C̃u and C̃s such that
∀x ∈ B(p, r̃), C̃η ⊇ Cηx (η = s, u) and

|Dfxv| ≥
(
1 + κ̃ud(x, S)2

)
|v| ∀v ∈ C̃ux ,

|Dfxv| ≤
(
1− κ̃sd(x, S)2

)
|v| ∀v ∈ C̃sx.
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To show this, let Ax = 1
2D

3fp(x, x, ·), and denote

Cx(β) =
{
v ∈ R2 : 〈v,Axv〉 ≥ β|x|2|v|2

}
One can use nondegeneracy of f and the Taylor expansionDfx = Id+Ax+RF (x) (where ‖RF (x)‖ = O(|x|3)),
since D2fx = 0, to show

C̃u :=
⋂
x∈S1
Cx
(3

5
κu
)
) Cup

and that |Dfxv| ≥
(
1 + 1

2κ
u|x|2

)
|v| ∀v ∈ C̃u.

One can then show that for a ∈ R2 \ {0}, the linear map Id + 1
2D

3(a, a, ·) has an eigenvector in C̃u and

an eigenvector in C̃s. (Argument is pretty much just pages of elementary geometry.)

There are a few more steps, but the final one is to show that there is a unique subspace E+ ⊆ R2 such
that ∀a ∈ E+ \ {0}, a is an eigenvector of 1

2D
3fp(a, a, ·) with positive eigenvalue. E− can analogously be

constructed using f−1. We set Eup = E+ and Esp = E−.

Proposition 2. ∀x ∈M , Wu
ε (x) is a curve tangent to Eux

Proof. For x 6= p, the argument is standard. For x = p, Hu’s strategy is to let Ω ⊂ B(p, ε) be those points

that can be joined to p by a curve tangent to vectors in C̃u, and use various estimates related to the fact
that

Wu
ε (p) =

∞⋂
i=0

(
f iΩ ∩B(p, ε)

)
.

Note that x 7→ Eηx is not continuous at x = p. Despite this, the end result of this cone analysis gives us
that Eηx ⊆ Cηx , giving us local product structure at p.

4 Other statistical properties

There are other statistical properties of almost Anosov and almost hyperbolic systems under current inves-
tigation. Many of them rely on the existence of a Markov partition of (M,f).

Typically Hu and others have either assumed the existence of a Markov partition, or have assumed almost
Anosov maps are as a rule topologically conjugate to Anosov diffeomorphisms (in which case the existence
of a Markov partition is immediate).

Given that almost Anosov diffeomorphisms have local product structure, perhaps one can construct a Markov
partition using similar strategies to Bowen without needing Anosov conjugacy. I have not yet tried this.

Theorem 3. A nondegenerate almost Anosov diffeomorphism f : T2 → T2 with finitely many fixed points,
and which is linear Anosov outside of a neighborhood of the origin and has the standard nondegenerate form
within the origin, is topologically conjugate to an Anosov diffeomorphism.

Proof. We need to show that f is both expansive and is the limit of a sequence of Anosov diffeomorphisms.
For x, y ∈ T2 \ {0}, the argument for expansiveness is standard: suppose for every ε > 0 we have distinct
x, y ∈ T2 so that d (fnx, fny) < ε for every n ∈ Z. Then y ∈Wu

ε (x)∩W s
ε (x). If we assume ε < min{δ0, ε0},

so that W η
ε0(x) ⊇W η

ε (x) for η = s, u, we get

y ∈Wu
ε (x) ∩W s

ε (x) ⊆Wu
ε0(x) ∩W s

ε (x) = {x}.

Therefore y = x, contradiction. Let ε be the expansiveness constant for x, y ∈ T2 \ {0}. Now suppose f fails
to be expansive at the origin, i.e. suppose that for every δ > 0 there is an x ∈ T2 so that d (fnx, 0) < δ
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for every n ∈ Z. Take δ < ε/2, and without loss of generality, assume δ is small enough so that Bδ(0)
contains no fixed points besides 0. Then let x ∈ Bδ(0) be so that d (fnx, 0) < δ for every n ∈ Z. Then,
d
(
fnx, fn+1x

)
≤ d (fnx, 0) + d

(
fn+1x, 0

)
< ε for every n ∈ Z. Since fx 6= x for small δ, this contradicts

our previous conclusion that f is expansive on T2 \ {0}. So f : T2 → T2 is expansive.
To prove that f is a limit of a sequence of Anosov diffeomorphisms, we define a homotopy H : T2×[0, 1]→

T2 so that H0 = f , and Hε is Anosov for every ε ∈ [0, 1]. For r0 > 0 small, the disc Br0 is a coordinate chart
in which f has the form

f(x, y) =

(
x
(
1 + ϕ(x, y)

)
, y

(
1− ψ(x, y)

) )
, (1)

for (x, y) ∈ R2 and

ϕ(x, y) = ax2 + by2 +O
(
|(x, y)|3

)
,

ψ(x, y) = cx2 + dy2 +O
(
|(x, y)|3

)
.

The differentials in Br0 are of the form

Df(x, y) =

(
1 + 3ax2 + by2 2bxy
−2cxy 1− cx2 − 3dy2

)
+O,

where O is a matrix of terms of order |(x, y)|3. By the cone decomposition of the tangent spaces of points
other than the origin, these matrices are hyperbolic. Since hyperbolicity is an open condition on matrices,
assuming r0 is sufficiently small, we may assume O = 0. Moreover, by openness of hyperbolicity, there are
continuous functions π, ρ : T2 → (0,∞) for which the matrix

e

(
1 + (3a− α) ax2 + by2 2bxy

−2cxy 1− cx2 − (3d− β)y2

)
(2)

is hyperbolic for 0 ≤ α ≤ π(x, y) and 0 ≤ β ≤ ρ(x, y). Define the functions α, β : [0, 1]→ [0, 1] by

α(s) = inf
x2+y2=s2

π(x, y) and β(s) = inf
x2+y2=s2

ρ(x, y).

Now define the continuous maps gε, hε : [0, 1]→ [0, 1] for each ε ∈ [0, r0] so that:

(i) gε(t) = hε(t) = 0 for t ≥ ε2;

(ii) gε → 0 and hε → 0 in C1 as ε→ 0;

(iii) for s < ε, we have − 1
2α(s) < g′ε(s

2) < 0 and − 1
2β(s) < h′ε(s

2) < 0.

Note (ii) and (iii) tell us gε(t) > 0 and hε(t) > 0 for t < ε2. Let Hε : T2 → T2 be maps for each ε > 0 so
that in the coordinate ball Br0 , Hε is of the form

Hε(x, y) =

(
x
(
1 + gε

(
x2 + y2

)
+ ax2 + by2

)
, y

(
1− hε

(
x2 + y2

)
− cx2 − dy2

))
,

and we further assume that outside of Br1 , the map Ht ≡ F is linear Anosov for all t, and in the annulus
Br1 \ Br0 , Ht smooths out to F . By assumptions (i) and (ii) of gε, f is the C1 limit of Hε as ε → 0, so
we only need to show each Hε is Anosov for ε ∈ (0, ε0) for some small ε0. To that end, the derivative of
Hε : T2 → T2 for a fixed ε is

DHε(x, y) =

(
1 + Φε(x, y) 2xy

(
g′ε
(
x2 + y2

)
+ b
)

−2xy
(
h′ε
(
x2 + y2

)
+ c
)

1−Ψε(x, y)

)
(3)

where

Φε(x, y) = gε
(
x2 + y2

)
+
(
3a+ 2g′ε

(
x2 + y2

) )
x2 + by2,

Ψε(x, y) = hε
(
x2 + y2

)
+
(
3d+ 2h′ε

(
x2 + y2

) )
y2 + cx2.
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Our objective is to show that these linear maps are hyperbolic for every (x, y) ∈ T2. Since Hε(x, y) = F for
(x, y) 6∈ Bε, and we know DF is hyperbolic everywhere, we only need to check the case when x2 + y2 < ε2.

Hyperbolicity may fail in two ways: if Φε(x, y) or Ψε(x, y) are too small at some point (x, y), or if the
upper right and lower left terms of (3) are too far from 0. The latter concern is easy to address: assuming
|(x, y)| is small, since α

(
x2 + y2

)
→ 0 and β

(
x2 + y2

)
→ 0 as |(x, y)| → 0, condition (iii) on the definition

of gε and hε give us g′ε
(
x2 + y2

)
> −b and h′ε(

(
x2 + y2

)
> −c. In particular, the furthest either the upper

right or lower left entries of (3) can be from 0 are 2bxy and −2cxy for any x, y.
To address the first concern, i.e. ensuring Φε(x, y) and Ψε(x, y) are not too small, we observe:

Φε(x, y) ≥ gε
(
x2 + y2

)
+
(
3a− α (|(x, y)|)

)
x2 + by2 >

(
3a− π(x, y)

)
x2 + by2,

and

Ψε(x, y) ≥ hε
(
x2 + y2

)
+
(
3d− β(|(x, y)|)

)
y2 + cx2 >

(
3d− ρ(x, y)

)
y2 + cx2.

Therefore, the furthest each linear map DHε(x, y) could possibly be from being hyperbolic would be if
DHε(x, y) were of the form(

1 +
(
3a− π(x, y)

)
x2 + by2 2bxy

−2cxy 1−
(
3d− ρ(x, y)

)
y2 − cx2

)
and as we saw in (2), this matrix is still hyperbolic.

Many arguments giving statistical properties of almost Anosov diffeomorphisms rely on quotienting the
manifold by unstable leaves in each Markov partition rectangle, and observing analogous properties of the
resulting almost expanding map.

Definition 3. A map f : M →M is almost expanding on a closed invariant subset Λ ⊆M if there is some
finite set S ⊆M such that ∀ε > 0 ∃κ > 0 s.t.

|Dfxv| > κ|v| ∀x ∈M \B(S, ε), ∀v ∈ TxM.

Manneville-Pomeau (sp?) map comes to mind.

Recall our coordinate system-based classification theorem for almost Anosov maps:

f(x, y) =

(
x
(
1 + ϕ(x, y)

)
, y
(
1− ψ(x, y)

) )
for (x, y) ∈ R2, with

ϕ(x, y) = a0x
2 + a1xy + a2y

2 +O(|(x, y)|3),

ψ(x, y) = b0x
2 + b1xy + b2y

2 +O(|(x, y)|3)

Theorem. Let f be a topologically transitive almost Anosov diffeomorphism on M with S = {p}. Assuming
Dfp = Id and Wu

ε (p), W s
ε (p) are C4 curves, with the above coordinate system, we have:

(i) If αa2 > 2b2 for some 0 ≤ α ≤ 1, a1 = b1 = 0, and a0b2 − a2b0 > 0, then f admits an SRB measure.

(ii) If 2a2 < αb2 for some 0 ≤ α ≤ 1 and a1b1 6= 0, then f admits an infinite SRB measure.

Theorem 4 (Hu). An almost Anosov map with αa2 > 2b2, a1 = b1 = 0, and a0b2 > a2b0 (which, as we
recall, admits an SRB probability measure µ) has polynomial decay of correlations w.r.t. Lipschitz functions,
with degree a2

2b2
− 1. That is, for Lipschitz g, ĝ, ∃C = C(g, ĝ) s.t.∣∣∣∣∫ g · (ĝ ◦ fn) dµ−

∫
g dµ

∫
ĝ dµ

∣∣∣∣ ≤ Cn− a2
2b2

+1 ∀n ≥ 1.
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Proof. Boils down to checking bounds on unstable leafs of f in different sets

P ′n =
{
x 6∈ P : f ix ∈ P ∀1 ≤ i ≤ n

}
which follows since

dµu ◦ f
dµu

(x) is proportional to µ(Pn−1)/µ(Pn) = µ(P ′n−1)/µ(P ′n) for all n, for all x ∈ Pn,

where µu = conditional Wu-measure.

More recently, Hu and Zheng (his student) proved a somewhat stronger result, with some additional
assumptions on the diffeomorphism.

Uses fact that if f : T2 → T2 is almost Anosov, then for any nbhd U of p, ∃θ∗ ∈ (0, 1) for which the
unstable subspaces in U are Hölder continuous with Hölder exponent θ∗.

Theorem 5 (Hu, Zheng). Let f be a Cr (r ≥ 4) topologically mixing nondegenerate almost Anosov dif-
feomorphism with an indifferent fixed point p. Suppose a0b2 > a2b0, 4b2 < a2, and a1 = b1 = 0. Fix
α, β ∈ (0, 1/2) with

α

1 + α
< β <

2a2b2
a2

2 + a2b2 + b22
<

2b2
a2

< α.

Then for any neighborhood U of p, and any Hölder continuous Φ and Ψ with exponent θ and suppΦ, suppΨ ⊆
M \ U , and

∫
Φ dµ

∫
Ψ, dµ 6= 0, we have

A′

n
1
β−1

≤
∣∣∣∣Corn(Φ,Ψ, f, µ)

∣∣∣∣ ≤ A

n
1
α−1

,

where µ is an SRB measure, θ ∈
(

max{(1/β− 1/α)(3/2 + b0/(2a0))−1, θ∗}, 1
]
, and A,A′ > 0 are constants

depending on Φ and Ψ.

Proof uses “renewal theory”, which I am not familiar with in large part but I’ll look into that.

5 Some open questions

• Can this analysis be applied to higher-dimensional systems?

• Can nondegeneracy be relaxed?

• Can this be adapted to almost hyperbolic attractors?

• What if Dfp is indifferent and nondiagonalizable?

– I did find a paper (Catsigeras & Enrich, 2000) addressing this question. It seems to suggest that
such systems do have SRB measures under certain conditions on their Taylor polynomials. For
example:

f(x, y) =

(
x+ ay + r(x, y), y + s(x, y)

)
where a 6= 0 and r, s are O(|(x, y)|2) (namely if the coeff. of x2 in r is 0 and coeff. of x3 in s is
6= 0, this system admits an SRB measure).

Another property of many dynamical systems is stochastic stability. A random perturbation F of f :
M →M is essentially a Markov chain with states space M and transition probabilities P(·|x). A measure µ
is invariant for F if for any Borel E ⊆M ,

µ(E) =

∫
P(E|x) dµ(x)

The system (M,f, µ0) is stochastically stable if given a 1-parameter family of random perturbations {Fε :
ε > 0} with Fε → f (i.e. Pε(·|x)→ δfx weakly ∀x), the invariant measures µε of F converge µε → µ0 weakly
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as ε→ 0.

It is known that Anosov maps (and hyperbolic maps generally) with SRB measures are stochastically stable.

• Under what families of random perturbations (if any) are almost hyperbolic systems (Λ, µ, f) stochas-
tically stable?

There are other questions pertaining more broadly to the thermodynamics of such maps, e.g. the subject
of my research.

• Under what conditions do there exist equilibrium states for geometric t-potentials ϕt(x) = −t log
∣∣Dfx|Eux ∣∣?

Conjecture 1. The answer to the last question is yes for M = T2, p = 0, and f having an SRB probability
measure in the first place.

The objective here is to construct a Young tower whose base is a Markov partition element away from
the singularity at 0. At the moment, this involves proving the following:

1. For x ∈ Λsi , define τ(x) = τi to be the inducing time, and the induced map F :
⋃
i∈N Λsi → Λ by

F |Λsi = fτi |Λsi . Then there is 0 < a < 1 s.t. for any i ∈ N, we have:

• For x ∈ Λsi , y ∈ γs(x),
d(F (x), F (y)) ≤ ad(x, y);

• For x ∈ Λsi , y ∈ γu(x) ∩ Λsi ,
d(x, y) ≤ ad(F (x), F (y)).

That is, we need that the induced map contracts points on the same stable leaf in forward time, and
points on the same unstable leaf in backwards time;

2. Let JuF (x) = det
∣∣DF |Eux ∣∣. There exists c > 0 and κ ∈ (0, 1) such that:

• For all n ≥ 0, x ∈ F−n
(⋃

i≥1 Λsi

)
, and y ∈ γs(x), we have∣∣∣∣log

JuF (Fn(x))

JuF (Fn(y)

∣∣∣∣ ≤ cκn.
• For any i0, . . . , in ∈ N, F k(x), F k(y) ∈ Λsik for 0 ≤ k ≤ n and y ∈ γu(x), we have∣∣∣∣log

JuF (Fn−k(x))

JuF (Fn−k(y)

∣∣∣∣ ≤ cκk.
This is similar to what is done by Hu, Zhang, and Young, although they don’t use the phrase ”Young

tower”.
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