
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2022020
DYNAMICAL SYSTEMS

SRB MEASURES OF SINGULAR HYPERBOLIC ATTRACTORS

Dominic Veconi

Department of Mathematics

The Pennsylvania State University
University Park, PA 16802, USA

Abstract. It is known that hyperbolic maps admitting singularities have at

most countably many ergodic Sinai-Ruelle-Bowen (SRB) measures. These

maps include the Belykh attractor, the geometric Lorenz attractor, and more
general Lorenz-type systems. In this paper, we establish easily verifiable suffi-

cient conditions guaranteeing that the number of ergodic SRB measures is at

most finite, and provide examples and nonexamples showing that the condi-
tions are necessary in general.

1. Introduction. One primary question in smooth ergodic theory is the existence
of “physical measures” for a smooth dynamical system. Given a compact Riemann-
ian manifold M and a smooth map f : U → M , U ⊆ M open, a physical measure
is one in which the Birkhoff averages of continuous functions are constant on a set
of positive measure. In other words, a probability measure µ is a physical measure
if

m

{
x ∈ U : lim

n→+∞

1

n

n−1∑
k=0

(
ϕ ◦ fk

)
(x) =

∫
U

ϕdµ ∀ϕ ∈ C0(U)

}
> 0,

where m is the Riemannian volume. Among the most significant physical measures
are the Sinai-Ruelle-Bowen (SRB) measures. These are invariant measures for hy-
perbolic dynamical systems that have conditional measures on unstable leaves that
are absolutely continuous with respect to the Riemannian leaf volume. For uni-
formly hyperbolic dynamical systems (such as transitive Anosov diffeomorphisms
and attractors of Axiom A systems), there is a unique SRB measure [9], and the ex-
istence of SRB measures has been established for several classes of nonuniformly hy-
perbolic dynamical systems [10, 14, 18] and partially hyperbolic dynamical systems
[2, 8]. It was further shown in [15] that if M is a compact Riemannian 2-manifold
and f : M → M is a hyperbolic diffeomorphism admitting an SRB measure, then
this SRB measure is unique.

Many dynamical systems in engineering and natural sciences exhibit “chaotic”
behavior: their trajectories appear disordered and they are highly sensitive to initial
data. The simplest mathematical examples of such systems are uniformly hyper-
bolic and uniformly expanding, and so hyperbolic dynamical systems have been
at the forefront of smooth ergodic theory since at least the 1960s. However, most
stochastic dynamical systems arising from physical and natural phenomena are not
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uniformly hyperbolic. In these instances, uniqueness results for uniformly hyper-
bolic dynamical systems and surface maps (such as those described in [15]) no
longer apply. Examples of such dynamical systems include the Lorenz attractor
model of atmospheric convection, the associated geometric Lorenz attractor (de-
scribed in more detail below), and the Belykh attractor of phase synchronization
theory [5, 13, 17]. The latter two are maps of the unit square that admit highly
complex limit sets, so that the resulting maps are not invariant under Lebesgue
volume and may not a priori admit a unique SRB measure.

Although our results concern discrete singular hyperbolic maps, many results
about singular hyperbolic attractors historically come from investigations into hy-
perbolic flows, the most famous being the flow generated by the Lorenz equations.
In [11], J. Kaplan and J. Yorke used a Poincaré return map to study the dynamical
behavior of the Lorenz attractor, such as the parameters for which periodic points
are dense. This Poincaré map was later reformulated as the geometric Lorenz attrac-
tor, which is a simplified discrete model of the Poincaré map of the original Lorenz
flow. The more general family of discrete Lorenz-type maps was introduced in [1].
In the years that followed, the Lorenz system and related hyperbolic flows have led
to active research in singular hyperbolic attractors (see e.g. [1, 5, 13, 16, 17], and
others). There is also a large body of work on singular hyperbolic and sectional-
hyperbolic flows more generally. In [17], it is shown that singular hyperbolic flows
admit finitely many ergodic physical measures; more recently, it was shown in [3]
that flows of Hölder-C1 vector fields admitting a sectional-hyperbolic attracting set
admit finitely many ergodic SRB measures. The proof in [3] also relies on Poincaré
return maps, and so these results extend to discrete singular hyperbolic maps aris-
ing as Poincaré maps of hyperbolic flows. For a detailed discussion of the ergodic
properties of hyperbolic flows and their attractors, see [4].

In this paper, we consider the class of discrete singular hyperbolic dynamical
systems. These are hyperbolic maps f : K \ N → K, where K ⊂ M is a precom-
pact open subset of a Riemannian manifold M , and N ⊂ K is a closed subset of
singularities on which f fails to be continuous and/or differentiable. The map f is
uniformly hyperbolic on the non-invariant set K \N , but behaves more similarly to
the non-uniformly hyperbolic setting on an invariant set that consists of trajectories
passing nearby the the singular set N with a prescribed rate. Our setting includes
systems that are derived from Poincaré maps of hyperbolic flows, such as the geo-
metric Lorenz attractor, but also includes singular hyperbolic dynamical systems
that do not arise from flows, such as the Lozi map [12]. In [13], it was shown that
the attractors admitted by singular hyperbolic maps support at most countably
many ergodic SRB measures. In [16], conditions were given under which a singular
hyperbolic attractor admits at most finitely many ergodic SRB measures. We pro-
vide an alternative proof of this result, with somewhat different conditions that are
easy to verify. Namely, if the singular set is a disjoint union of finitely many em-
bedded submanifolds that transversally intersect unstable leaves, and if the image
of neighborhoods of the singular set remain separated from the singular set under
the dynamics for sufficiently long time (conditions (SH3), (SH6), and (SH7)), then
there are at most finitely SRB measures.

Although most examples of singular hyperbolic attractors in the literature sat-
isfy conditions (SH3) - (SH7) (see the examples in [1, 5, 7, 12, 13]), there exist
singular hyperbolic attractors that do not satisfy these conditions and admit infin-
itely many ergodic components. For this reason, these conditions are necessary for
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our statement to be true in full generality. For example, one can construct a fam-
ily of Lorenz-type attractors whose singular sets have infinitely many components,
and these examples admit countably many SRB measures, but these maps are not
topologically transitive (see Section 4.3).

Once the existence of ergodic SRB measures has been established, a natural
question to ask is when the SRB measure is unique. In [15], it is shown that in
the case of a C1+α diffeomorphism f of a compact surface, if f is topologically
transitive, then f admits at most one SRB measure. A similar result may be
proven for singular hyperbolic attractors, provided a certain regularity condition on
the stable foliation (Theorem 3.5, also [13]). The regularity condition needed is local
continuity, which roughly means that the smooth functions Es(x) → M defining
the local stable leaf W s

loc(x) vary continuously with x ∈ K \N , where Es(x) ⊂ TxM
is the stable subspace at x. In this paper, we show that a singular hyperbolic map
for which the stable foliation is locally continuous admits a unique SRB measure if
and only if the map is topologically transitive.

This paper is structured as follows. Section 2 is devoted to preliminary con-
structions and definitions needed to discuss singular hyperbolic dynamical systems.
Our main result is stated and proven in Section 3. Section 4 is spent discussing
examples of dynamical systems satisfying the hypotheses of our main result, as well
as examples of systems that fail these hypotheses and that admit infinitey many
SRB measures.

2. Preliminaries. We begin by defining singular hyperbolic attractors, and discuss
some of their major properties. We consider a Riemannian manifold M , an open,
bounded, connected subset K ⊂ M with compact closure, and a closed subset
N ⊂ K. We further consider a map f : K \N → K satisfying:

(SH1) f is a C2 diffeomorphism from K \N to f(K \N).

We further define N+ := N ∪ ∂K as the discontinuity set for f (on which the
function f is discontinuous), and further define

N− =
{
y ∈ K : There are z ∈ N+ and zn ∈ K \N+ s.t. zn → z and f(zn)→ y

}
.

The set N− is referred to as the discontinuity set for f−1. We further assume the
map f satisfies:

(SH2) There exist Ci > 0 and αi ≥ 0, with i = 1, 2, such that∥∥d2fx
∥∥ ≤ C1ρ(x,N+)−α1 for x ∈ K \N,∥∥d2f−1

x

∥∥ ≤ C2ρ(x,N−)−α2 for x ∈ f(K \N)

where ρ is the Riemannian distance in M .

Define the set K+ by

K+ =

∞⋂
n=0

(
K \ f−n(N+)

)
=
{
x ∈ K : fn(x) 6∈ N+ for all n ≥ 0

}
,

so that K+ is the largest forward-invariant set on which f is continuous. Further,
define

D =

∞⋂
n=0

fn(K+) and Λ = D.

We say Λ is the attractor for f .
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Proposition 1. [13] We have D = Λ\
⋃
n∈Z f

n(N+). Furthermore, f and f−1 are

well-defined on D, and f(D) = D and f−1(D) = D.

Given z ∈M , α > 0, and a subspace P ⊂ TzM , we denote the cone at z around
P with angle α by

C(z, α, P ) =

{
v ∈ TzM : ∠(v, P ) := inf

w∈P
∠(v, w) ≤ α

}
.

Definition 2.1. The map f : K \N → K is singular hyperbolic if there is C > 0,
λ > 1, a function α : D → R, and two distributions P s, Pu on K \N+ of dimensions
dimP s = p, dimPu = q = n − p (with n = dimM), such that the cones Cs(z) =
C(z, α(z), P sz ) and Cu(z) = C(z, α(z), Puz ), for z ∈ K \ N , satisfy the following
conditions:

(a) The angle between Cs(z) and Cu(z) is uniformly bounded below over K \N+,
and in particular, Cs(z) ∩ Cu(z) = 0;

(b) dfz(C
u(z)) ⊂ Cu(f(z)) for z ∈ K \ N+, and df−1

z (Cs(z)) ⊂ Cs(f−1(z)) for
z ∈ f(K \N+);

(c) for any n > 0, we have:

|dfnz v| ≥ Cλn|v| for z ∈ K+, v ∈ Cu(z);

|df−nz | ≥ Cλn|v| for z ∈ fn(K+), v ∈ Cs(z).

In this instance, the set Λ defined above is called a singular hyperbolic attractor.

Define the following subsets of TzM for z ∈ D:

Esz =

∞⋂
n=0

df−nfn(z)C
s(fn(z)) and Euz =

∞⋂
n=0

dfnf−n(z))C
u(f−n(z)).

Proposition 2. [13] The sets Esz and Euz are subspaces of TzM , called the stable
and unstable subspaces at z respectively. They satisfy the following properties:

(a) the dimensions of these subspaces are the same as the respective subspaces
P sz and Puz around which the cones Cs(z) and Cu(z) are centered. That is,
dimEsz = dimP sz = p and dimEuz = dimPuz = q = n− p;

(b) TzM = Esz ⊕ Euz ;
(c) the angle between Esz and Euz is bounded below uniformly over D;
(d) for any n ≥ 0 and z ∈ D, we have

|dfnz v| ≤ Cλ−n|v| for v ∈ Es(z),
|df−nz v| ≤ Cλ−n|v| for v ∈ Eu(z).

The distributions Es and Eu on D thus form uniformly hyperbolic structure
with singularities. In particular, they are the tangent spaces of stable and unstable
foliations on D. To rigorously characterize the leaves of these foliations, we need to
define the subsets on which stable and unstable manifolds may be defined.
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For arbitrary ε > 0 and l ∈ N, we denote:

D̂+
ε,l =

{
z ∈ K+ : ρ

(
fn(z), N+

)
≥ l−1e−εn, n ≥ 0

}
;

D−ε,l =
{
z ∈ Λ : ρ

(
f−n(z), N−

)
≥ l−1e−εn, n ≥ 0

}
;

D+
ε,l = D̂+

ε,l ∩ Λ;

D0
ε,l = D−ε,l ∩D

+
ε,l;

D±ε =
⋃
l≥1

D±ε,l;

D0
ε =

⋃
l≥1

D0
ε,l.

We note that D̂+
ε,l, D

±
ε,l, and D0

ε,l are closed, and hence compact. Also observe that

D0
ε = D+

ε ∩D−ε ⊂ D for ε > 0, and D0
ε is invariant under both f and f−1. Further,

D+
ε and D−ε are invariant under f and under f−1 respectively.
For the proof of the following proposition, see the discussion in Sections 1.5 and

2.1 of [13].

Proposition 3. There exists ε > 0 and such that:

(a) for z ∈ D+
ε , there is an embedded (possibly disconnected) submanifold W s

loc(z)
of dimension p = dimEsz for which TzW

s
loc(z) = Esz ;

(b) for z ∈ D−ε , there is an embedded (possibly disconnected) submanifold Wu
loc(z)

of dimension q = n− p = dimEuz for which TzW
u
loc(z) = Euz .

Furthermore, define Bsz(y, r) to be the ball in W s
loc(z) of radius r centered at y ∈

W s
loc(z), where the distance is the induced distance ρs on W s

loc(z). Define Buz (y, r)
and ρu similarly. Then there is an α with λ−1 < α < 1 such that for r > 0, there
is a constant C = C(r) such that:

(c) for z ∈ D+
ε , y ∈W s

loc(z), w ∈ Bsz(y, r), and n ≥ 0, we have

ρs(fn(y), fn(w)) ≤ Cαnρs(y, w);

(d) for z ∈ D−ε , y ∈Wu
loc(z), w ∈ Buz (y, r), and n ≤ 0, we have

ρu(fn(y), fn(w)) ≤ Cαnρu(y, w).

Additionally, for z ∈ D−ε,l, let B(z, δ) denote the ball of ρ-radius δ centered at

z. Then there are δi = δi(z) > 0, i = 1, 2, 3, with δ1 > δ2 > δ3, so that for
w ∈ B(z, δ3), the intersection Bsz(z, δ1)∩Wu

loc(w) is nonempty and contains exactly
one point, denoted [w, z]; and furthermore, Buw([w, z], δ2) ⊂Wu

loc(w).

We denote

Wu(x) =
⋃
n≥0

fn
(
Wu

loc(f−n(x))
)

for x ∈ K (1)

and

W s(x) =
⋃
n≥0

f−n (W s
loc(fn(x)) ∩ Λ) for x ∈ Λ. (2)

Given δ > 0 and x ∈ K, let BuT (δ, x) ⊂ Eux denote the open ball of radius δ in Eux .
For δ less than the injectivity radius of M at x, suppose the connected component

of
(

expx
∣∣
Bu

T (δ,x)

)−1

(Wu(x)) ⊂ TxM containing 0 is the graph of some smooth
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function ψ : BuT (δ, x) → Esx. If such a ψ exists for a particular x ∈ M and δ > 0,
we denote

Wu
δ (x) = expx ({(u, ψ(u)) : u ∈ BuT (δ, x)}) .

Such a number δ > 0 and such a function ψ exist for each particular x ∈ K (in
particular they form Wu

loc(x)), but δ may depend on x (and in particular may not
have a uniform lower bound). We define W s

δ (x) similarly.
Given local submanifolds W s

loc(z1) and W s
loc(z2), we define the holonomy map π :

W s
loc(z1)→ W s

loc(z2) to be π(w) = [w, z2] = Wu
loc(w) ∩W s

loc(z2). Let νsz = ν|W s
loc(z)

and νuz = ν|Wu
loc(z) denote the induced Riemannian volumes on W s

loc(z) and Wu
loc(z)

respectively for z ∈ D±ε .

Proposition 4. The local foliation W s
loc(z) for z ∈ D0

ε,l is absolutely continuous,

in the sense that for any z1, z2 ∈ D0
ε,l, the pushforward measure π∗ν

s
z1 on W s

loc(z2)
is absolutely continuous with respect to νsz2 .

Proof. This follows from Proposition 10 of [13].

Generally, maps satisfying (SH1) and (SH2) are dissipative, and so do not pre-
serve Riemannian volume. Therefore, our interest is in the following class of mea-
sures:

Definition 2.2. A probability measure µ on K is an SRB (Sinai-Ruelle-Bowen)
measure if µ is f -invariant and if the conditional measures on the unstable leaves
are absolutely continuous with respect to the Riemannian leaf volume.

In [13], the existence of SRB measures for singular hyperbolic attractors is proven
under certain regulatory conditions. We will describe their construction of SRB
measures. Let Ju(z) = det

(
df |Eu

z

)
denote the unstable Jacobian of f at a point

z ∈ D. For y ∈Wu(z) and n ≥ 1, set

κn(z, y) =

n−1∏
j=0

Ju
(
f−j(z)

)
Ju (f−j(y))

.

The functions κn converge pointwise to a function κ (see [13], Proposition 6(1)).
Fix z ∈ D−ε and a sufficiently small r > 0, and set

U0 := Bu(z, r) := Buz (z, r), Ũn := f(Un−1), Un := Ũn \N+.

Further set

C̃0 = 1 and C̃n = C̃n(z) =

(
n−1∏
k=0

Ju
(
fk(z)

))−1

.

For n ≥ 0, define the measures ν̃n = ν̃n(z) on Un by

dν̃n(y) = C̃n(z)κ (fn(z), y) dνuz (y),

and let νn be a measure on Λ defined by νn(A) = ν̃n(A∩Un) for any Borel A ⊆ Λ.
Under moderate assumptions, we have that νn = fn∗ ν0 (see [13], Proposition 8).
Consider the sequence of measures

µn =
1

n

n−1∑
k=0

νk.



SRB MEASURES OF SINGULAR HYPERBOLIC ATTRACTORS 7

These measures admit a subsequence that converges in the weak topology to an
f -invariant SRB measure (a priori depending on the reference point z ∈ D−ε ) on Λ,
proving existence of SRB measures.

3. Main result and proof. In this section, we give conditions under which a
singular hyperbolic attractor admits at most finitely many ergodic SRB measures,
as well as conditions under which the SRB measure is unique.

3.1. Main result. We begin by reviewing the assumptions we make on our map
f : K \ N → K. Assumption (SH1) is the basic setting, and assumption (SH2)
concerns the regularity of the map. We now complete the assumptions of our setting.
Below, assumption (SH3) concerns the structure of the singular set N ; assumptions
(SH4) - (SH6) concern the smoothness and hyperbolicity of f ; assumption (SH7)
is a further regulatory assumption; and assumption (SH8) is a condition on the
regularity of the stable foliation.

(SH3) The singular set N is the disjoint union of finitely many embedded sub-
manifolds Ni with boundary, of dimension equal to the codimension of the
unstable foliation Wu.

(SH4) f is continuous and differentiable in K \N+.
(SH5) f possesses two families of stable and unstable cones Cs(z), Cu(z), for

z ∈ K \N+.
(SH6) The assignment z 7→ Cu(z) has a continuous extension in each Ki ⊂ K

(where Ki are the connected components of K \ N+), and there exists
α > 0 such that for z ∈ N \ ∂K and v ∈ Cu(z), w ∈ TzN , we have
∠(v, w) ≥ α.

(SH7) f j(N−) ∩N+ = ∅ for 0 ≤ j < k, where λk > 2 and

λ = inf
x∈K\N+

‖dfx‖ > 1.

Two general definitions are required before we state assumption (SH8). Let M
be a Riemannian manifold, X ⊂ M a Borel subset, and µ a measure on M with
µ(X) > 0. A partition ξ on X is a smoothly measurable foliation if for µ-almost
every x ∈ X, the element ξx of ξ containing x has the form ξx = W (x) ∩ X,
where W (x) is an immersed C1 submanifold in M passing through X. Observe,
in particular, that the foliations W s and Wu on K \ N as above define smoothly
measurable foliations on the attractor Λ.

Given x ∈ M and r > 0, let Br(x) denote the ball of radius r in M . Consider
X ⊂M a Borel subset, ξ a smoothly measurable foliation onX, and x ∈ X for which
ξx = W (x)∩X for some C1 submanifold W (x). There is a radius r = r(x) for which
the submanifold W (x) ∩ Br(x) is the image of a C1 function ϕx : Ux → M , where
Ux ⊂ TxW (x) is a neighborhood of 0 and ϕx(0) = x, d(ϕx)0(T0TxW (x)) = TxW (x).
We will say ξ is locally continuous if for µ-almost every x ∈ X, the assignments
y 7→ ϕy and (y, u) 7→ d(ϕy)u are continuous over y ∈ X ∩ Br(x)(x) (note ϕy is
defined µ-almost everywhere in X ∩Br(x)(x)), where u ∈ Uy ⊂ TyW (y).

(SH8) The stable foliation W s is locally continuous.

We now state our main result.

Theorem 3.1. Let Λ be a singular hyperbolic attractor of a map f : K \ N → K
satisfying conditions (SH1) - (SH7).

(a) There exist at most finitely many ergodic SRB measures of the map f : Λ→ Λ.
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(b) If f satisfies condition (SH8), then there exist a collection of pairwise disjoint

f -invariant sets U0, . . . , Un, open in Λ, for which
⋃n
i=0 Ui = Λ, and for which

for i > 0, Ui is supported by exactly one ergodic SRB measure. In particular,
if f satisfies condition (SH8), and f |Λ : Λ→ Λ is topologically transitive, then
f admits exactly one ergodic SRB measure. Conversely, if f admits a unique
SRB measure µ and suppµ = Λ, then f |Λ : Λ→ Λ is topologically transitive.

Remark 1. In dimension 2, the existence of an ergodic SRB measure can be proven
under more general assumptions. In particular, in Theorem 1 of [13], a regularity
condition is given under which a singular hyperbolic attractor admits at least one
ergodic SRB measure (in arbitrary dimension), and in Theorem 14 of [13], it is
shown that conditions (SH3) - (SH7) imply this regularity condition in dimension
2.

The remainder of this section is devoted to proving this result. In Section 3.2,
we prove existence of SRB measures and show that a singular hyperbolic attractor
is charged by at most finitely many ergodic SRB measures. In Section 3.3, we show
that Λ admits a kind of measurable partition by open sets, each element of which
is given full measure by exactly one SRB measure, and thus the SRB measure is
unique if (SH8) is satisfied and f |Λ is topologically transitive.

3.2. Finitely many SRB measures. In two dimensions, the existence of SRB
measures for singular hyperbolic attractors follows from the following result, which
follows from Theorem 1 and Theorem 14 in [13].

Proposition 5. Suppose f : K \ N → K is a singular hyperbolic map of a two-
dimensional manifold satisfying conditions (SH1) - (SH7). Then there exists an
SRB measure for f .

In higher dimensions, (SH1) - (SH7) do not imply the regulatory conditions
needed to guarantee the existence of SRB measures. See Theorem 1 of [13] and the
discussion to find sufficient conditions for the existence of SRB measures in higher
dimensions.

We now show that there are only finitely many ergodic SRB measures. We have
defined Wu

δ (x) to be the image under expx : TxM →M of the graph of a function
ψ : BuT (δ, x) → Esx, where BuT (δ, x) ⊂ Eux is the open ball of radius δ centered at
0 ∈ Eux , provided that such a function ψ and such a number δ > 0 exist. For each
x ∈ M , such a ψ and δ do exist. However, we may also fix δ > 0 and define the
set B−δ to be the set of all x ∈ D for which there is some ε > 0, some l ∈ N,

and some y ∈ D−ε,l so that Wu
δ (y) exists and contains x. Note that x 6∈ B−δ if, for

example, Wu(x) is not the image under expx of a smooth graph in a δ-neighborhood
of 0 ∈ TxM .

Proposition 6. For sufficiently small ε > 0, we have that D0
ε 6= ∅.

Proof. This follows from Theorem 14 and Proposition 3 of [13].

Using this proposition, assume ε > 0 in D±ε is chosen so that D0
ε 6= ∅. This im-

plies, in particular, that D−ε has full measure with respect to any invariant measure.
Observe that if δ1 < δ2, then B−δ2 ⊆ B

−
δ1

. Indeed, if x ∈ B−δ2 , then x ∈Wu
δ2

(y) for

some y ∈ D−ε,l. By regularity of f , D−ε has full measure, so D−ε ∩Wu
δ2

(y) has full

conditional measure. So we can choose y′ ∈ Wu
δ2

(y) with distance δ1 from x along

Wu
δ2

(y), giving us x ∈Wu
δ1

(y′), so x ∈ B−δ1 .
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In particular, if µ is an ergodic SRB measure that charges B−δ1 , then since B−δ2 ⊂
B−δ1 , either B−δ2 is charged by µ, or has µ-measure 0. In the latter case, if there is

an ergodic SRB measure µ1 that charges B−δ2 , then both µ1 and µ are ergodic SRB

measures charging B−δ1 . To summarize, if δ2 > δ1, then B−δ1 is charged by at least

as many, if not more, SRB measures as B−δ2 .

Our proof of Theorem 3.1 (a) has two major components. The first is to show
that there is a δ0 > 0 for which B−δ0 is charged by every ergodic SRB measure, and

so B−δ and B−δ0 are charged by the same measures for every 0 < δ < δ0. The second

is to show that every set B−δ , and in particular B−δ0 , is charged by only finitely many
ergodic SRB measures.

Lemma 3.2. Suppose the singular hyperbolic map f : K \N → K satisfies (SH1)
- (SH7). There is a δ0 > 0 such that for every ergodic SRB measure µ on Λ,
µ(B−δ0) > 0.

Proof. Assumption (SH3) states that N is composed of finitely many closed sub-
manifolds with boundary. Call these submanifolds Ni. Observe that if U is a
neighborhood of N , then f(U) is a neighborhood of N−. Because f j(N−)∩N = ∅
for 1 ≤ j < k with λk > 2 by (SH7), and because N− and its images are closed (as
is N), there is a radius Q > 0 so that the open neighborhoods BQ(Ni) of each Ni
of radius Q are pairwise disjoint and whose first k images do not intersect N . Let
δ0 < Q.

Fix an ergodic SRB measure µ. Our strategy will be to construct a “rectangle”
R ⊂ Λ, formed by the local hyperbolic product structure of Λ, with µ(R) > 0.
Applying the map f to R, the unstable leaves composing R will eventually grow
sufficiently large so that a certain iterate of R lies inside B−δ0 . Since µ is f -invariant

and µ(R) > 0, this will show that µ(B−δ0) > 0 for any ergodic SRB measure µ.

Proposition 6 implies µ(D−ε ) > 0. Therefore there is a generic point x ∈ D−ε ,
which implies there is an r > 0 and an l ≥ 1 for which µ(D−ε,l ∩ Br(x)) > 0. By

virtue of the hyperbolic local product structure of D (see Proposition 3), there is
an α > 0 and a β > 0 for which W s

β(x) ⊂ Br(x), and the local unstable leaves

Wu
α (y) ⊂ Br(x) are well-defined for every y ∈ D−ε,l ∩ W s

β(x). Furthermore, on

a subset A ⊂ W s
β(x) of full conditional measure, the leaves Wu

α (y) have positive
conditional measure for every y ∈ A. Therefore, the set

R1 =
⋃
y∈A

Wu
α (y)

has positive µ-measure and is contained in Br(x).
Suppose α ≥ δ0. Let y0 ∈ A. Then Wu

α (y0) is the union of finitely many Wu
δ0

(yi),

with yi ∈Wu
α (y0)∩D−ε . So by definition of B−δ0 , for z ∈Wu

α (y0), we may take y = yi
in the definition of B−δ0 for one of the yi’s, so z ∈ B−δ0 . So Wu

α (y0) ⊂ B−δ0 for every

y0 ∈ A. In particular, R1 ⊂ B−δ0 , so since R1 has positive measure, µ(B−δ0) > 0.
Now suppose α < δ0, and let x1 = x. By compactness of K, there is a time j1 ≥ 1

at which f j1(Wu
α (x1)) intersects N (and, by assumption, it does so transversally).

For 1 ≤ j ≤ j1, the image f j(Wu
α (x1)) is a local unstable leaf of size αj ≥ λjα. If

λjα ≥ δ0 for some j ≤ j1, then using the same arguments as in the previous para-
graph, f j(Wu

α (x1)) ⊂ B−δ0 , for almost every y0 ∈ f j(W s
β(x1)), and more generally,

f j(R) ⊆ B−δ0 , yielding the desired result.
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On the other hand, if αj < δ0 for 1 ≤ j ≤ j1, then the leaf f j1(Wu
α (x1)) contains

a ball in Wu
loc(f j1(x1)) of diameter α′ ≥ 1

2λ
j1α that does not intersect N . Because

µ is an SRB measure, the conditional measure on this ball is absolutely continuous
with respect to the Riemannian measure—in particular, the set of generic points in
this leaf has full µ-conditional measure. So choose a generic point x2 in this ball.
As with x1, we can use the hyperbolic product structure induced by f to create a
rectangle R2 of positive µ-measure defined by

R2 =
⋃
y∈A2

Wu
α′(y),

where A2 ⊂W s
β2

(x2) is a set of full measure for some β2 > 0. Relabel αj1 = α′ to be
the diameter of the local unstable leaf containing x2 and not intersecting N . This
leaf (and in fact all of R2) lies inside BQ(N) =

⋃
iBQ(Ni), and by our construction

of BQ(N), the first k images of this leaf under f will not intersect N . Therefore,
either eventually one of the images of this leaf is of diameter > δ0, or this leaf
intersects N . In the former case, as before, we have a rectangle of positive µ-measure
lying inside of B−δ0 . In the latter case, the leaf is of diameter ≥ λkαj1 ≥ 1

2λ
k+j1α.

Again, there is a ball in this leaf of diameter ≥ 1
2λ

kαj1 ≥ 1
4λ

k+j1α that does not
intersect N . As before, we may find a generic point x3 in this ball, and continue
iterating this local leaf and resulting positive-measure rectangle.

Proceeding in this way, we construct a sequence of local unstable leaves Wu
αj

(xm),
j = j1 + · · ·+ jm−1 + l, where each leaf image intersects N at time j1 + · · ·+ jm, and
thus admits an open ball of sufficient size and not intersecting N . By construction,
ji+1 − ji ≥ k for each i, so each leaf has

αj = αj1+...+jm−1+l ≥
λj

2m−1
α ≥

(
λk

2

)m
λj1

2
α.

As m increases, we eventually get
(
λk/2

)m
λj1α/2 ≥ Q > δ0 by (SH7). Once this

occurs, we have a rectangle of positive measure contained in B−δ0 .

The next lemma shows that B−δ0 is charged by finitely many ergodic SRB mea-

sures. Since B−δ0 is charged by every ergodic SRB measure, this will prove Theorem
3.1.

Lemma 3.3. For sufficiently small δ > 0, the set B−δ admits at most finitely many

ergodic SRB measures. In particular, there is a subset Λ0 ⊂ B−δ that has full
measure with respect to any invariant measure, and a finite partition of Λ0 each of
whose elements is charged by exactly one ergodic SRB measure.

Proof. The proof is an adaptation of a Hopf argument. Define the subsets Λ+ ⊂ K
and Λ− ⊂ Λ respectively to be the set of points where, for every ϕ ∈ C0, the limits

ϕ+(x) = lim
n→∞

1

n

n−1∑
k=0

ϕ
(
fk(x)

)
and ϕ−(x) = lim

n→∞

1

n

n−1∑
k=0

ϕ
(
f−k(x)

)
exist. By the Birkhoff ergodic theorem, both Λ+ and Λ− have full measure with
respect to any invariant measure. Observe that if x ∈ Λ− and y ∈Wu

α (x) for α > 0,
then ϕ−(y) = ϕ−(x), so y ∈ Λ−, and so Wu

δ (x) ⊆ Λ− for every x ∈ Λ−. Similarly,
W s
α(x) ⊆ Λ+ for x ∈ Λ+, α > 0.
Recall that a point x ∈ K lies in B−δ if and only if there is a y = y(x) ∈ D−ε,l

for some ε, l for which x ∈Wu
δ (y). So let Λ0 be the set of points x ∈ B−δ for which
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there is a subset A ⊆Wu
δ (y) of full conditional measure (with respect to Lebesgue)

such that A ⊆ Λ+ and ϕ+|A is constant for all ϕ ∈ C0(K).
We make the following claims:

• the set Λ0 has full measure in B−δ with respect to any invariant measure, and
• the set Λ0 is closed.

Granting these claims for now, using the notation in the above paragraph, for
x ∈ Λ0, let ϕ+(Wu

loc(x)) = ϕ+(z) for z ∈ A ⊆ Wu
δ (y), where y = y(x) is as in the

definition of B−δ . We will say that x, z ∈ Λ0 are equivalent, and write x ∼ z, if
ϕ+(Wu

loc(x)) = ϕ+(Wu
loc(z)) for every continuous ϕ : K → R.

Note that the stable foliation W s is absolutely continuous (see (2) and Proposi-
tion 4 for the definition of W s and absolute continuity of the foliation). So if x ∈ Λ0

and z ∈ W s(x) ∩ Λ0, then ϕ+(x) = ϕ+(z), and there is a set A′ of full measure in
Wu
δ (y(z)) on which ϕ+ is constant and equal to ϕ+(Wu

loc(x)). So x ∼ z whenever
z ∈W s(x) ∩ Λ0.

Suppose Λ0
1 is an equivalence class, and let x ∈ Λ0

1. We claim there is an ε > 0
so that if y ∈ Λ0 lies in the ε-ball centered at x, then x ∼ y. It will follow that each
equivalence class is open in Λ0, and therefore also closed in Λ0 since the equivalence
classes form a partition of Λ0 and Λ0 itself is closed.

To prove this claim, by virtue of Proposition 7 in [13], there is an ε > 0 for which
Bε(x) has local hyperbolic product structure: for z ∈ Wu

ε (x) and y ∈ W s
ε (x), the

intersection Wu
ε (y)∩W s

ε (z) contains exactly one point, which we denote [y, z]. Let
y ∈ Bε(x) ∩ Λ0, let Buε (x) denote the ball in the local unstable manifold Wu

loc(x)
centered at x of size ε, and let θ : Buε (x) → Wu

ε (y) denote the holonomy map
θ(z) = [y, z].

To show x ∼ y, let A ⊆ Buε (x) be the set of points z for which ϕ+(z) = ϕ+(x)
for every continuous function ϕ. By definition of the set Λ0, the set A has full
measure in Buε (x). By absolute continuity of the stable foliation, θ(A) has full
measure in θ(Buε (x)) ⊂Wu

ε (y). Since ϕ+ is constant on stable leaves, ϕ+ ◦ θ = ϕ+

for every continuous ϕ. Therefore ϕ+(z1) = ϕ+(x) for almost every z1 ∈ θ(Buε (x)).
Again, by definition of Λ0, ϕ+(z1) = ϕ+(y) for every continuous ϕ and almost every
z1 ∈ θ(Buε (x)). Therefore ϕ+(x) = ϕ+(y), and so x ∼ y.

It follows from these arguments that each equivalence class is open in Λ0, and
hence is also closed in Λ0. By closedness of Λ0 in K, there is an ε > 0 such that each
pair of equivalence classes is separated by a distance of at least ε. By compactness of
K, it follows that there may only be finitely many such equivalence classes. Because
an ergodic SRB measure must charge exactly one of these equivalence classes, there
may only be finitely many SRB measures.

It remains only to prove our previous two claims. Let Λ̂ denote those points
x ∈ Λ− such that ϕ−(x) = ϕ+(x) for every continuous function ϕ. By the Birkhoff

ergodic theorem, Λ̂ has full measure with respect to any invariant measure. Further,

let Λ̂0 denote the set of points x ∈ Λ̂ such that there is a set A ⊂ Wu
γ (x) of full

conditional measure such that A ⊆ Λ+ and ϕ−(z) = ϕ+(z) for every continuous
function ϕ and all points z ∈ A. Here, Wu

γ (x) is the connected component of Wu(x)

intersecting Λ̂ and containing x (and W s
γ (x) is defined similarly). Since ϕ−(z) takes

the same value for all z ∈Wu
ε (x), ϕ−|A = ϕ+|A is constant.

For x ∈ Λ̂0, the set Λ̂0 contains the union over y ∈ W s
γ (x) ∩ B−δ of manifolds

Wu
ε (y) that contain a subset of full conditional measure (as this subset lies in Λ̂,
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which has full measure). Because W s
γ (x) has full conditional measure in Λ̂, it follows

that this union also has full measure, from which it follows that Λ̂0 has full measure.

If a point x has a negative semitrajectory that enters Λ̂0 infinitely often, then

one can show x ∈ Λ0. Since Λ̂0 has full measure, the set of points whose negative

semitrajectories enter Λ̂0 also has full measure, so Λ0 has full measure. This proves
the first of the two previous claims.

To show that Λ0 is closed, suppose x is the limit point of a sequence (xn) in Λ0.
Since the stable foliation is absolutely continuous and Wu

ε (xn) converges to Wu
ε (x)

for ε > 0 small, we can find a set A ⊂ Wu
δ (y) of full conditional measure, where

y = y(x) is as in the definition of B−δ , on which ϕ+ is constant for all continuous
functions ϕ. Therefore x ∈ Λ0.

Proof of Theorem 3.1(a). Note B− :=
⋃
δ>0B

−
δ is invariant under f , and as we

showed in Lemma 3.2, µ(B−) > 0 for every ergodic SRB measure µ. Therefore
µ(B−) = 1 for every ergodic SRB measure µ, and since µ(D) = 1 as well, every
ergodic SRB measure gives full volume to D ∩ B−. If there were infinitely many
ergodic SRB measures, then by Lemma 3.2, there would be a δ > 0 for which B−δ
is charged by infinitely many SRB measures. But this contradicts Lemma 3.3.

3.3. Uniqueness and topological transitivity. Generally speaking, a map sat-
isfying (SH1) - (SH7) may admit more than one ergodic SRB measure (see examples
in Section 4). However, under moderate assumptions on the regularity of the sta-
ble foliation W s, one can show that the components of topological transitivity of
f |Λ : Λ → Λ are in correspondence with the number of distinct ergodic SRB mea-
sures. We formalize this idea in this section.

Given a metric space X, we will call a Borel measure µ on X locally positive if
µ(U) > 0 for every nonempty open subset U ⊂ X. A collection {Ui}i∈I of open
subsets Ui ⊂ X, together with a collection of Borel measures {µj}j∈J on X, with
J ⊂ I, is an open partition by measures if:

(P1) the open sets {Ui}i∈I are pairwise disjoint;

(P2)
⋃
i∈I Ui = X;

(P3) µj (X \ Uj) = 0 for all j ∈ J ; and
(P4) µj |Uj

is locally positive for all j.

By local positivity, we may assume I\J has a single element, which we denote 0 ∈ I.
If the open sets {Ui}i∈I and the measures {µj}j∈J are chosen so that I = J , we say
that the open partition by measures is complete. If f : X → X is continuous, and
the measures µj are ergodic probability measures, we call an open partition by the
ergodic measures µj an open ergodic partition if in addition to (P1) - (P4) above,
we also have

(P5) µ(U0) = 0 for any ergodic measure µ.

Lemma 3.4. If X is a complete metric space, and f : X → X is a continuous
and open map admitting an open ergodic partition by the open sets {Ui}i∈I and
the ergodic f -invariant Borel measures {µj}j∈I\{0}, then U i is f -invariant for each
i. If the open ergodic partition is complete, then f |Ui

is topologically transitive for
each i ∈ I.

Proof. By (P1) - (P4) and the fact that each measure µj is f -invariant, Ui is in-

variant for every i, as is U i. Now suppose the open ergodic partition is com-
plete. If V, V ′ ⊂ U i are open, then

⋃
n∈Z f(V ) is open and f -invariant. Thus if
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fn(V ) ∩ V ′ = ∅ for every n ≥ 0, ergodicity of µi implies that either µi(V
′) = 0 or

µi(V ) = 0. By local positivity, either V ′ = ∅ or V = ∅.

Theorem 3.1(b) is now an immediate consequence of the following lemma.

Lemma 3.5. If f : K ⊂ N → K is a singular hyperbolic map with attractor Λ ⊂ K
satisfying condition (SH8) in addition to (SH1) - (SH7), then Λ admits a finite
open ergodic partition, and the measures defining this partition are SRB measures.
If in addition f |Λ : Λ→ Λ is topologically transitive, then the open ergodic partition
consists of a single open set and a single measure, and thus in particular, f admits
a unique ergodic SRB measure.

Proof. The fact that Λ admits an open ergodic partition by SRB measures follows
from Theorems 4 and 6 of [13]. Finiteness of this partition follows from Theorem
3.1(a). If f |Λ is topologically transitive, by Lemma 3.4, there is at most one ergodic
SRB measure; existence of this measure follows from Proposition 5.

4. Examples. Maps described in Theorem 3.1 do exist, and as the following non-
example will demonstrate, the hypotheses described in this result are necessary
assumptions in general. Examples of singular hyperbolic attractors can be found
in, for example, Lorenz-type attractors; but this class of singular hyperbolic maps
includes cases where the singular set has countably many components, and admit
countably many SRB measures.

4.1. Lorenz-type attractors. To begin, we describe the class of singular hyper-
bolic attractors generated by Lorenz-type maps of the unit square. The definition
of these maps is as follows. Let I = (−1, 1), K = I2, and −1 = a0 < a1 < · · · <
am < am+1 = 1. Define the rectangles Pi = I × (ai, ai+1) for 0 ≤ i ≤ m, and
N = I × {a0, . . . , am+1}. Let f : K \N → K be an injective map given by

f(x, y) =
(
ϕ(x, y), ψ(x, y)

)
, x, y ∈ I,

where the functions ϕ,ψ : K → R satisfy the following conditions:

(L1) ϕ and ψ are continuous in P i for each i, and:

lim
y→a+i

ϕ(x, y) = ϕ+
i , lim

y→a+i
ψ(x, y) = ψ+

i ,

lim
y→a−i

ϕ(x, y) = ϕ−i , lim
y→a−i

ψ(x, y) = ψ−i ,

where ϕ±i , ψ±i do not depend on x for each i;
(L2) ψ and ϕ have two continuous derivatives in Pi. Furthermore, there are positive

constants B1
i , B2

i , C1
i , and C2

i ; constants 0 ≤ ν1
i , ν

2
i , ν

3
i , ν

4
i ≤ 1; a sufficiently

small constant γ > 0; and continuous functions A1
i (x, y), A2

i (x, y), D1
i (x, y),

and D2
i (x, y) that tend to zero uniformly over x as y → ai or y → ai+1; so

that for (x, y) ∈ Pi,

dϕ(x, y) = B1
i (y − ai)−ν

1
i

(
1 +A1

i (x, y)
)

dψ(x, y) = C1
i (y − ai)−ν

2
i

(
1 +D1

i (x, y)
) } if y − ai ≤ γ;

dϕ(x, y) = B2
i (ai+1 − y)−ν

3
i

(
1 +A2

i (x, y)
)

dψ(x, y) = C2
i (ai+1 − y)−ν

4
i

(
1 +D2

i (x, y)
) } if ai+1 − y ≤ γ;

and additionally, ‖ϕxx‖ , ‖ψxx‖ , ‖ϕxy‖ , ‖ψxy‖ ≤ const.;
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(L3) the following inequalities hold:

‖fx‖ ,
∥∥g−1
y

∥∥ < 1;

1−
∥∥g−1
y

∥∥ ‖fx‖ > 2
√∥∥g−1

y

∥∥ ‖gx‖ ∥∥g−1
y fy

∥∥;∥∥g−1
y

∥∥ ‖gx‖ < (1− ‖fx‖)
(
1−

∥∥g−1
y

∥∥) ;

where ‖·‖ = maxi sup(x,y)∈Pi
| · |.

This class of maps includes the geometric Lorenz attractor, for which we have
m = 1, a1 = 0, and

ϕ(x, y) = (−B|y|ν0 +Bx sgn(y)|y|ν + 1) sgn(y),

ψ(x, y) = ((1 +A)|y|ν0 −A) sgn(y),

where 0 < A < 1, 0 < B < 1
2 , 1/(1 +A) < ν0 < 1, and ν > 1.

Theorem 4.1. Let f : I2 \ N → I2 be a Lorenz-type map for which one of the
following properties hold:

(a) νji = 0, for i = 1, . . . ,m and j = 1, 2, 3, 4;
(b) ρ

(
fn(ϕ±i , ψ

±
i ), N

)
≥ Cie

−γn (where Ci are constants independent of n and
γ > 0 is sufficiently small).

Then f admits a singular hyperbolic attractor Λ, which is supported by at most
finitely many ergodic SRB measures.

Remark 2. This result is also proven in [5], and is also a consequence of the
arguments in both [3] and [16]. We present an additional proof of this result using
Theorem 3.1 directly.

Proof. Properties (SH1) and (SH4)-(SH7) are shown in [13], Theorem 17. The
singular set N is the disjoint union of finitely many horizontal lines I × {ai}, i =
1, . . . ,m, so (SH3) is satisfied. The statement now follows from Theorem 3.1.

Remark 3. Condition (SH4) is easy to verify for the geometric Lorenz attractor,
as the map ϕ : I2 \ (I × {0})→ R extends to ±1 as y → 0 from above or below. In
particular, N−∩K = ∅, since the continuations of ϕ to N map N to the boundary of
K, so (SH4) is in fact trivial. Moreover, this is true with any Lorenz-type attractor
for which ϕ±i = ±1 or ∓1.

More generally, (SH4) holds if (b) is satisfied in the statement of Theorem 4.1,
provided γ > 0 is sufficiently small.

4.2. The Belykh attractor. We consider a map f : K \ N → K, where K =
[−1, 1]2, and

N = {(x, kx) ∈ K : −1 < x < 1}
where |k| < 1. (More generally one can consider N = {(x, h(x)) : −1 < x < 1} for
a continuous function h.) We then choose constants λ1, λ2, µ1, µ2 so that

0 < λ1, µ1 <
1

2
and 1 < λ2, µ2 <

2

1 + |k|
,

and define the map T : K \N → R2 by

T (x, y) =

{
(λ1(x− 1) + 1, λ2(y − 1) + 1) if y > kx;

(µ1(x+ 1)− 1, µ2(y + 1)− 1) if y < kx.

This map was first introduced in [7] as a model of phase synchronization theory.
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Theorem 4.2. Define T : K \N → R2 as above.

(a) The map T is a map from K \N into K, and satisfies conditions (SH1) and
(SH3)-(SH6).

(b) For any choice of λ2 > 1, and for all but countably many µ2 > 1 (the countably
many exceptions depending on λ2), there is a δ > 0 so that T satisfies (SH7)
when |k| < δ, and thus admits finitely many ergodic SRB measures for such
k.

Proof. The first of the above assertions is proven in [13]. To prove the second, first
note that [13] shows that T satisfying (SH3)-(SH6) admits countably many SRB
measures. In general, (SH7) may fail; however, we will show that given λ2 > 0, this
can happen only for countably many choices of µ2 > 0. To see this, note that when
k = 0, (SH7) fails if the horizontal lines forming N− lie inside f−n(N) for some
n > 0, which only happens for countably many choices of µ2. Given a pair λ2 and
µ2 so that T satisfies (SH7) with k = 0, the line segments forming N and f j(N−)
do not intersect for 0 ≤ j < k, where max(λ2, µ2)k > 2. Increasing |k| will rotate
these line segments; by continuity, if the change in |k| is sufficiently small, these line
segments will remain disjoint. So, for these choices of λ2, µ2, and k, T will admit
finitely many SRB measures by Theorem 3.1.

4.3. Necessity of assumptions. The singular set N may in principle have count-
ably many components. If this is the case, then the attractor may admit infinitely
many ergodic SRB measures, as the following example illustrates.

Let Pk = (−1, 1)×
(
2−k − 1, 2−(k−1) − 1

)
for k ≥ 0. Then K = I2 =

⋃
k Pk, and

N1 := K \
⋃
k Pk is the countable union of line segments (−1, 1)×{2−k−1} =: N1

k .

Let f : I2 \
(
(−1, 1) × {0}

)
→ I2 be the geometric Lorenz attractor, and let

fk : Pk\
(
(−1, 1)×

{
2−k−1+2−k

2 − 1
}

be given by fk = h−1
k ◦f◦hk, where hk : Pk → I2

is the conjugacy map given by

hk(x, y) =
(
x, 2k+2(y + 1)− 3

)
.

Now denote

N = I2 \
(
Pk \

(
(−1, 1)×

{
2−k−1 + 2−k

2
− 1

}))
= (−1, 1)×

⋃
k≥0

({
2−k − 1,

2−k + 2−k−1

2
− 1

})
,

and let g : I2 \N → I2 be given by

g(x, y) = fk(x, y) for (x, y) ∈ Pk \
(

(−1, 1)×
{

2−k−1 + 2−k

2
− 1

})
.

Effectively, we have embedded the geometric Lorenz attractor into each disjoint
rectangle Pk. The map g admits a singular hyperbolic attractor, and the singular
set N is the disjoint union of countably many submanifolds. Since each orbit of g is
entirely contained in one of the rectangles Pk, each Pk supports a distinct ergodic
SRB measure. So the requirement that there are only finitely many components of
the singular set N is a necessary assumption for our result to hold.
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