Thermodynamics of Pseudo-Anosov Diffeomorphisms Warwick University Ergodic Theory and Dynamical Systems Seminar

Dominic Veconi

Coventry University

May 23 2023

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Why study these?

A diffeomorphism f : M → M of a Riemannian manifold is Anosov if at every x ∈ M, the tangent space splits into two invariant subspaces T_xM = E^u(x) ⊕ E^s(x):

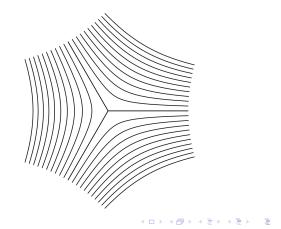
 $|df_x^n v| \le C\lambda^{-n} |v|$ for every $v \in E^s(x)$; and $|df_x^{-n}v| \le C\lambda^{-n} |v|$ for every $v \in E^u(x)$.

for some $\lambda > 1$ and C > 0.

- In low dimensions, these are hyperbolic toral autmorphisms, A : T² → T², A ∈ SL(2, Z), and their perturbations.
- If we can't have Anosov maps on other surfaces, what's the next best thing?

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi


Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Foliations with singularities

A foliation with singularities *F* of a 2-manifold *M*, for our purposes, is a foliation of *M* where there are finitely many points x₁,..., x_l ∈ *M* at which some number p = p(x_k) = p_k ≥ 3 of the leaves meet (these are the prongs of the singularity):

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

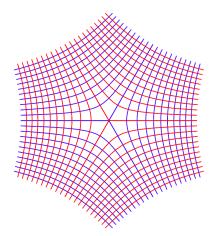
Young Towers

Pseudo-Anosov Homeomorphisms

- A homeomorphism f : M → M of a 2-manifold M is pseudo-Anosov if there are two f-invariant foliations with singularities, F^s and F^u, for which:
 - 1. the foliations share the same singularities, and the same number of prongs;
 - 2. the foliations intersect transversally away from the singularities;
 - 3. there is a $\lambda > 1$ such that for x, y in the same \mathcal{F}^{s} -leaf, $\rho^{s}(f(x), f(y)) = \lambda^{-1}\rho^{s}(x, y)$, and for x, y in the same \mathcal{F}^{u} -leaf, $\rho^{u}(f(x), f(y)) = \lambda \rho^{u}(x, y)$;

where ρ^s and ρ^u are the distances in the \mathcal{F}^s and \mathcal{F}^u foliations with respect to a Riemannian metric on M that has a density vanishing at the singularities.

Thermodynamics of Pseudo-Anosov Diffeomorphisms


Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Pseudo-Anosov Homeomorphisms

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Proof of Main Result

The blue curves represent the stable foliation, along which nearby points contract; and the red curves represent the unstable foliation, along which nearby points expand.

Nielsen-Thurston Classification

Theorem (Nielsen, Thurston)

Any homeomorphism on a compact topological manifold M is isotopic to a map f that is one of the following:

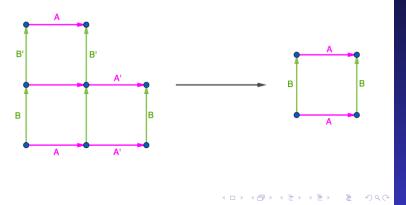
- f is periodic: there is a positive integer m with f^m = Id;
 - EG. $f = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} : \mathbb{T}^2 \to \mathbb{T}^2;$
- f is reducible: there is a closed curve on M that is f-invariant (these are also known as Dehn twists);
 - EG. $f = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} : \mathbb{T}^2 \to \mathbb{T}^2;$
- f is pseudo-Anosov;

• EG.
$$f = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} : \mathbb{T}^2 \to \mathbb{T}^2$$
.

The pseudo-Anosov maps form an open set in the homeomorphisms of M, and exhibit the most interesting dynamical properties.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi


Pseudo-Anosov Maps

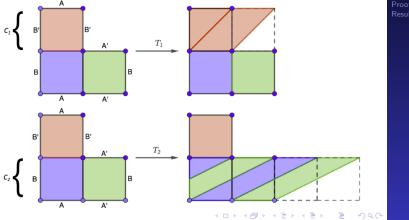
Smooth Ergodic Theory

Young Towers

Examples from Anosov maps

- An Anosov diffeomorphism is a pseudo-Anosov homeomorphism with no singularities.
- ► Linear Anosov maps on T² lift to pseudo-Anosov maps on higher-genus surfaces via branched coverings (may be necessary to lift powers of Anosov maps).

Thermodynamics of Pseudo-Anosov Diffeomorphisms


Dominic Veconi

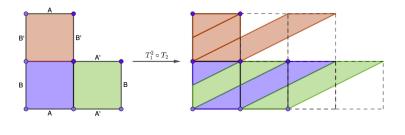
Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

▶ Orientable genus-2 surface S₂ can be horizontally split into two cylinders C₁ and C₂, each of which admits a Dehn twist T₁ and T₂ resp. Note dT₁ = (¹₀ ¹₁) on C₁, and dT₂ = (¹₀ ²₁) on C₂, away from the identified vertex (singularity).

Thermodynamics of Pseudo-Anosov Diffeomorphisms


Dominic Veconi

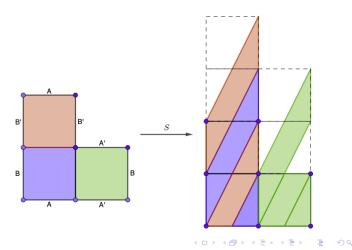
Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

► The Dehn twists T₁ and T₂ can be composed to form a horizontal "multi-twist" T := T₁² ∘ T₂, whose differential away from the vertex is (¹₀ ²₁):

Thermodynamics of Pseudo-Anosov Diffeomorphisms


Dominic Veconi

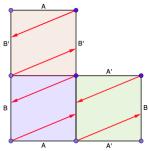
Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

► A similar vertical multi-twist S can be defined on the cylinder made from the red and blue squares, and the cylinder made from the green square. The corresponding differential is (¹/₂ ⁰).

Thermodynamics of Pseudo-Anosov Diffeomorphisms


Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

- $T \circ S$ has the constant differential $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$.
- Eigenvalues are $3 2\sqrt{2}$ and $3 + 2\sqrt{2}$, with resp. eigenvectors $\begin{pmatrix} 1-\sqrt{2} \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1+\sqrt{2} \\ 1 \end{pmatrix}$.
- ► This is a pseudo-Anosov map whose stable/unstable foliations are parallel to the eigendirections for 3 2√2 and 3 + 2√2, resp. The vertex is a 6-pronged singularity (unstable prongs illustrated).

▶ In fact, this map is the lift of the linear Anosov map on \mathbb{T}^2 induced by $\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

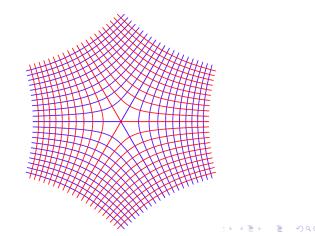
Properties

Suppose $f : M \to M$ is a pseudo-Anosov homeomorphism with expansion factor $\lambda > 1$.

- There is a Riemannian metric on *M* inducing a volume ν under which *f* is invariant, given locally by the product of the stable/unstable lengths ν^s and ν^u in F^s and F^u.
- If U is a neighborhood of a singularity x_i ∈ M and φ : U → ℝ² is a coordinate chart, ν has a density with respect to φ_{*}⁻¹(Leb) vanishing at x_i.
- ▶ If $x \in M$ is not a singularity, then f is smooth at x and there are orthonormal bases of $T_x M$ and $T_{f(x)} M$ with respect to which df_x has the matrix form $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi


Pseudo-Anosov Maps

Smooth Ergodic Theory

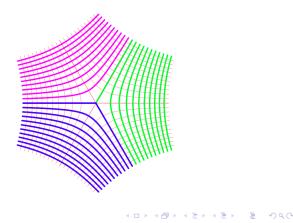
Young Towers

Behavior at Singularities

► The orthonormal basis are tangent vectors of the stable and unstable leaves. Along different prongs of the singularities, matrix form of *df* approaches different rotations of (^λ₀ ⁰_{λ⁻¹}). In particular, *f* is not differentiable at the singularities.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi


Pseudo-Anosov Maps

Smooth Ergodic Theory

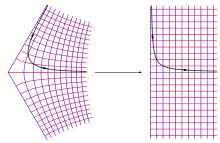
Young Towers

Simplifying assumptions

Since f is a homeomorphism, f permutes the singularities, so we may assume singularities are fixed points. Furthermore, we may assume that near singularities, the open sectors between the stable prongs are invariant under f.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi


Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Slow-down procedure

► Each open sector is homeomorphic to the right half-plane, where in coordinates we have s₁ = const are the stable leaves, and s₂ = const are unstable leaves.

In these coordinates, the map has the form

$$f(s_1, s_2) = (\lambda s_1, \lambda^{-1} s_2) \tag{1}$$

which is the time-1 map of the flow given by

$$\dot{s}_1 = s_1 \log \lambda, \quad \dot{s}_2 = -s_2 \log \lambda.$$

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Slow-down procedure

- ► For each singularity x_i , choose coordinate ball of radius $r_i > 0$ in which $f(s_1, s_2) = (\lambda s_1, \lambda^{-1} s_2)$ in each sector.
- ▶ Let $0 < \tilde{r_i} < r_i$. Suppose x_i has p prongs. Define a "slow-down" function $\Psi_p : [0, \infty) \to \mathbb{R}$ so that:

1. For $u \leq \tilde{r}_i^2$, we have

$$\Psi_p(u) = C_p u^{(p-2)/p}$$

where
$$C_p = (p/2)^{(2p-4)/p}$$

2. Ψ_p is C^{∞} except at 0;
3. $\dot{\Psi}_p(u) \ge 0$ for $u > 0$;
4. $\Psi_p(u) = 1$ for $u \ge r_i^2$.

▶ Let G_p be the time-1 map of the flow given by:

$$\begin{cases} \dot{s}_1 = (\log \lambda) s_1 \Psi_p \left(s_1^2 + s_2^2 \right), \\ \dot{s}_2 = -(\log \lambda) s_2 \Psi_p \left(s_1^2 + s_2^2 \right). \end{cases}$$
(2)

Same trajectories as s₁ = (log λ)s₁, s₂ = -(log λ)s₂, but slower. Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Slow-down procedure

▶ In coordinates, for $|(s_1, s_2)| \ge r_i$, we have $G_p(s_1, s_2) = f(s_1, s_2)$, so we define $g : M \to M$ in coordinates by

$$g(x) = \begin{cases} G_p(s_1, s_2) & \text{if } x = (s_1, s_2) \text{ is near a singularity,} \\ f(x) & \text{otherwise.} \end{cases}$$

- Compare to the Katok map G : T² → T², which is a toral automorphism that has similarly been slowed down at the origin.
 - After slow-down, the Katok map is conjugated with a homeomorphism to make the map Lebesgue-preserving ("blows up" trajectories near the origin).
- For smooth pseudo-Anosov maps, we instead show g preserves the measure Ψ_p(s₁² + s₂²)⁻¹ds₁ ∧ ds₂.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Pseudo-Anosov Diffeomorphisms

Theorem (Gerber and Katok, 1982)

- ► The map g is a C[∞] nonuniformly hyperbolic diffeomorphism of M.
- g is topologically conjugate to the pseudo-Anosov map f via a homeomorphism that is isotopic to the identity.
- This conjugacy is a homeomorphism only, and cannot be made C¹.
- In every neighborhood of the singularities, g is real analytic. Furthermore, g is Bernoulli with respect to an invariant measure given by a smooth positive density.

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Physical measures

- If we're studying ergodic theory, what measures are we interested in?
- Primarily we want to study the *physical measures*:

$$\mu\left\{x:\frac{1}{n}\sum_{k=0}^{n-1}\left(\varphi\circ f^{k}\right)(x)\rightarrow\int\varphi\,d\mu\quad\forall\,\varphi\in C^{0}\right\}>0$$

- For hyperbolic systems f : M → M, one important physical measures are the Sinai-Ruelle-Bowen (SRB) measures, which are f-invariant probability measures µ for which:
 - µ has positive Lyapunov exponents almost everywhere, and
 - μ has absolutely continuous conditional measures on unstable manifolds (w.r.t. Riemannian leaf volume).
- ► For Anosov and pseudo-Anosov maps that preserve area, SRB measures are simply this area.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Equilibrium states and geometric potentials

• Let $\varphi : M \to \mathbb{R}$ be continuous. A probability measure μ_{φ} is an **equilibrium measure** for φ if

$$P_{g}(\varphi) = h_{\mu_{\varphi}}(g) + \int_{M} \varphi \, d\mu_{\varphi},$$

where $h_{\mu_{\varphi}}(g)$ is the metric entropy of g and $P_g(\varphi)$ is the topological pressure of φ :

$$P_g(arphi) = \sup_{\mu \in \mathcal{M}(g)} \left\{ h_\mu(g) + \int_M arphi \, d\mu
ight\}$$

 We consider equilibrium states of the geometric t-potential

$$\varphi_t(x) = -t \log \left| dg \right|_{E^u(x)} \right|.$$

We denote $\mu_t := \mu_{\varphi_t}$.

• Observe that μ_0 is a measure of maximal entropy.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Ergodic theory of Anosov maps

The special case t = 1 gives the geometric potential φ₁(x) = − log det |dg|_{E^u(x)}|, for which the equilibrium state µ₁ is SRB:

Theorem

If $f : M \to M$ is an Anosov (or more generally Axiom A) diffeomorphism, there exists a unique SRB measure for f.

Proof.

From Bowen's notes:

- Any Hölder continuous potential φ : M → ℝ has a unique equilibrium state μ_φ for φ.
- ► The geometric potential \u03c6₁(x) is Hölder, so \u03c6₂ = \u03c6₁ is the unique equilibrium state.
- This equilibrium state satisfies all of the requisite properties of SRB measures.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

The pseudo-Anosov case

Bowen's proof of this result relies on two key points:

- The map admits a finite Markov partition.
- Geometric potential φ_1 is Hölder.

Proposition (Fathi, Shub '79; Katok, Gerber '82) The pseudo-Anosov homeomorphism $f : M \rightarrow M$ admits a finite Markov partition, with respect to which f is Bernoulli.

- ► For "linear" pseudo-Anosov homeomorphisms, this argument applies basically verbatim.
- For the slowed-down Katok-Gerber diffeomorphisms, φ₁ is not Hölder (in particular its induced map on the finite symbolic space is not Hölder).

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Decay of correlations and CLT

f has exponential decay of correlations with respect to a measure µ and a class of functions H on M if there exists κ ∈ (0, 1) s.t. for any h₁, h₂ ∈ H,

$$\left|\int (h_1 \circ f^n) h_2 d\mu - \int h_1 d\mu \int h_2 d\mu\right| \leq C \kappa^n$$

for some $C = C(h_1, h_2) > 0$.

f satisfies the Central Limit Theorem (CLT) if for any *h* ∈ H s.t. *h* ≠ *h*′ ∘ *f* − *h*′, *h*′ ∈ H, there is σ > 0 s.t.

$$\lim_{n\to\infty} \mu \left\{ \sqrt{n} \left(\frac{1}{n} S_n(h) - \mathbb{E}(h) \right) < t \right\}$$
$$= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^t e^{-\tau^2/2\sigma^2} d\tau$$

where $S_n(h) = \sum_{i=0}^{n-1} h(f^i(x))$ and $\mathbb{E}(h) = \int_M h \, d\mu$.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Main Result

Theorem (V. 2022)

Let $g : M \to M$ be a pseudo-Anosov diffeomorphism of a compact orientable manifold M (as in the preceding construction).

- 1. For any $t_0 < 0$, we may choose radii $r_i > 0$ in the construction of g s.t. for $t \in (t_0, 1)$, there is a unique equilibrium measure μ_t for the geometric potential φ_t . Further:
 - μ_t satisfies CLT with respect to a class of functions containing all Hölder functions;
 - μ_t has exponential decay of correlations with respect to this class of functions, and is hence mixing;
 - the map is Bernoulli with respect to μ_t ;
 - the pressure function $t \mapsto P_g(\varphi_t)$ is real-analytic on $(t_0, 1)$.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Main Result (cont)

- 2. For t = 1, there are two classes of equilibrium measures associated to φ_1 :
 - convex combinations of the Dirac measures δ_{xi} centered at the singularities, and
 - a unique invariant SRB measure.
- 3. For t > 1, all equilibrium measures for φ_t are convex combinations of the measures δ_{x_i} .

This result closely mirrors a similar result (Pesin, Senti, and Zhang, 2017) about the Katok map $G : \mathbb{T}^2 \to \mathbb{T}^2$.

 Replace "convex combinations of δ_{xi}" with "the Dirac measure at the origin". Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Further results

Theorem (Wang 2019)

The Katok map G has a unique equilibrium state for φ_t , for every t < 1, with respect to which G has the CLT and exponential decay of correlations and large deviations.

Theorem (Pesin, Senti, Shahidi 2020)

Via a gluing procedure with the Katok map, any surface admits a $C^{1+\varepsilon}$ diffeomorphism with nonzero Lyapunov exponents and polynomial decay of correlations:

$$\left|\int (h_1 \circ f^n) h_2 d\mu - \int h_1 d\mu \int h_2 d\mu\right| \leq C n^{-\kappa}$$

Question: What about pseudo-Anosovs?

Both of these results assume the exponent α > 0 in the slowing down of the Katok map is < 1/2. Our exponent is (p − 2)/p > 1/2 when p ≥ 5.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Young diffeomorphisms (general idea)

- The proof of the main result relies on the technology of Young towers.
- Given g : M → M and Λ ⊂ M, let τ : Λ → N be an inducing time (often first-return time) and let G = g^τ : Λ → Λ be the induced map, defined by G(x) = g^{τ(x)}(x).
- The map g : M → M is a Young diffeomorphism with base Λ ⊂ M if Λ has hyperbolic product structure, and G satisfies certain "nice" properties, including:
 - Stable (resp. unstable) leaves are invariant under G (resp. G⁻¹);
 - G (resp. G⁻¹) contracts points in the same stable (resp. unstable) leaf as n→∞ (resp. n→-∞);
 - τ is integrable on some unstable leaf;
 - Distortion estimates are bounded (more on this later).

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Thermodynamics of Young's diffeomorphisms

Let g : M → M be a C^{1+ε} Young diffeomorphism of a compact Riemannian manifold M with base Λ ⊂ M and first return time τ : Λ → N. Under certain arithmetic and combinatorial conditions:

Theorem (Pesin, Senti, Zhang 2016)

- ► ∃ an equilibrium measure μ_1 for the potential φ_1 , which is the unique SRB measure;
- ► ∃ $t_0 < 0$ s.t. for $t \in (t_0, 1)$, there is a unique equilibrium measure μ_t for φ_t on $Y := \{g^k(x) : x \in \Lambda, 0 \le k \le \tau(x) - 1\};$
- For t ∈ (t₀, 1), the measure µ_t has exponential decay of correlations and the CLT with respect to a class of functions ℋ containing all Hölder functions on M.

Theorem (Shahidi, Zelerowicz 2018)

If $g: M \to M$ is mixing, then (M, g, μ_t) is Bernoulli.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Constructing Tower

- Let P be a Markov partition for g, and let P ∈ P be a rectangle that does not contain any singularity.
- Let $\tau(x)$ be first return time of x to P.
- For x ∈ P, let γ^s(x) and γ^u(x) be the connected component of the intersection of the stable and unstable leaves with P.
- For x with τ(x) < ∞, let U^u(x) ⊆ γ^u(x) be an open interval containing x, and

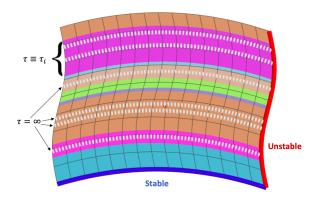
$$A^u(x) = \{y \in U^u(x) : y \in \partial P \text{ or } \tau(y) = \infty\}.$$

Assume $U^{u}(x)$ is small enough s.t. $\tau|_{U^{u}(x)\setminus A^{u}(x)} \equiv \text{const } \forall x \in P \text{ w} / \tau(x) < \infty.$ • Define the "stable strips":

$$\Lambda^{s}(x) = \bigcup_{y \in U^{u}(x) \setminus A^{u}(x)} \gamma^{s}(y).$$

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi


Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Constructing Tower

► We get countable collection $\{\Lambda_i^s\}_{i\geq 1} \le \tau/\tau \mid_{\Lambda_i^s} \equiv \tau_i \in \mathbb{N}$. Define $\Lambda = \bigcup_{i\geq 1} \Lambda_i^s$.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Proof of Main Result

Theorem (V. 2022)

The smooth pseudo-Anosov diffeomorphism $g : M \to M$ is a Young's diffeomorphism with tower base Λ .

Bounded Distortion

Most properties of Young diffeomorphisms are easy to verify, and follow from corresponding properties of pseudo-Anosov diffeomorphisms. The one tricky property is *bounded distortion*:

Lemma

There exist c > 0 and $\kappa \in (0, 1)$ such that for all $n \ge 0$, $x \in \Lambda$ and $y \in \gamma^{s}(x)$, we have

$$\left|\log rac{\left|dG
ight|_{E^u(G^n(x))}
ight|}{\left|dG
ight|_{E^u(G^n(y))}
ight|}
ight|\leq c\kappa^n.$$

This bound is easy to show outside of slow-down neighborhoods. Inside the slow-down, there is a bound on how far apart log |dg|_{E^u(gⁿ(x))}| and log |dg|_{E^u(gⁿ(y))}| can be. (This is why we assume stable sectors are locally invariant.) Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Equilibrium state existence: t < 1

 Using previous results, this gives us a unique equilibrium measure μ_t for t < 1 on the set

$$Y := \left\{ g^k(x) : x \in \Lambda, 0 \le k \le \tau(x) - 1 \right\}$$

- If P̂ is another element of the Markov partition for (M, g), same argument gives us unique equilibrium measure µ̂t for t < 1 and corresponding set Ŷ.</p>
- Assuming (M, g) is topologically transitive, since µ_t(U) > 0 and µ̂_t(Û) > 0 for every open U ⊃ P, Û ⊃ P̂, and g^k(U) ∩ Û ≠ Ø for some k ≥ 1, it follows from uniqueness that µ_t = µ̂_t.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

The t = 1 case

 For t = 1, we get at least one equilibrium measure, μ₁, which is an SRB measure. By the Pesin entropy formula,

$$P_g(\varphi_1) = h_{\mu_1}(g) - \int_M \log \left| dg \right|_{E^u(x)} \left| d\mu_1(x) = 0. \right|$$

・ロット (雪) ・ (日) ・ (日) ・ (日)

If ν is any other equilibrium measure for φ₁, it also satisfies the entropy formula.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

The t = 1 case

Theorem (Ledrappier, Young '84)

Any measure with positive Lyapunov exponents satisfying Pesin entropy formula is an SRB measure.

Theorem (Rodriguez-Hertz, Rodriguez-Hertz, Tahzibi, Ures '10)

A transitive surface map has at most one SRB measure.

- So if ν has positive Lyapunov exponents, ν is an SRB measure. By uniqueness of SRB measures, ν = μ₁.
- But if ν has no positive Lyapunov exponents, then $\log |dg|_{E^u(x)}| = 0 \nu$ -a.e., so ν is supported on the (finite) set of singularities.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

The t > 1 case

 If t > 1 and ν an equilibrium state for φ_t, then by the Margulis-Ruelle inequality,

$$h_
u(g) \leq t \int \log \det \left| dg |_{E^u(x)}
ight| \, d
u(x)$$

w/ equality $\iff \int \log \det \left| dg \right|_{E^{\nu}(x)} \left| d\nu(x) = 0. \right|$

 Only measures with zero Lyapunov exponents are supported on singularities. If δ is such a measure,

$$P(\varphi_t) = h_{\nu}(g) + \int \varphi_t \, d\nu \leq 0 = h_{\delta}(g) + \int \varphi_t \, d\delta$$

so we have equality, so log det $|dg|_{E^u(x)}| = 0$ ν -a.e., so ν is supported on the singularities.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

References

- A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces, in Séminaire Orsay, Astérisque 66-67, 1979.
- M. Gerber, A. Katok. Smooth models of pseudo-Anosov maps. Ann. scient. Éc. Norm. Sup. 4(15):173-204, 1982.
- E. Lanneau. Tell me a pseudo-Anosov. EMS Newsletter, Dec. 2017, 12-16.
- F. Ledrappier and L. S. Young. The metric entropy of diffeomorphisms, Bull. of the Amer. Math. Soc. (N.S.), 11(2):343-346, 1984.
- Y. Pesin, S. Senti, and K. Zhang. Thermodynamics of the Katok map (revised version). *Ergod. Theory Dyn. Syst.*, **39**(3):764-794, 2019
- Y. Pesin, S. Senti, and K. Zhang. Thermodynamics of towers of hyperbolic type. Trans. Amer. Math. Soc. 368(12):8519-8552. 2016.
- F. Rodriguez-Hertz, M. A. Rodriguez-Hertz, A. Tahzibi, and R. Ures, Uniqueness of SRB measures for transitive diffeomorphisms on surfaces, *Commun. Math. Phys.*, **306**(1):35-49, 2011.
- F. Shahidi, A. Zelerowicz. Thermodynamics via inducing, J. Stat. Phys, 175(2):351-383, 2019.
- D. Veconi. Thermodynamics of Smooth Models of Pseudo-Anosov Homeomorphisms. Ergod. Theory Dyn. Syst., 2022.
- T. Wang. Unique equilibrium states, large deviations and Lyapunov spectra for the Katok map. *Ergod. Theory Dyn. Syst.*, 2020.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers