# SRB measures and topological singular hyperbolic attractors International and Online Mathematics Days III

Dominic Veconi

International Centre for Theoretical Physics

December 9 2022

Dominic Veconi (International Centre for TheSRB measures and topological singular hyperl

## Hyperbolic sets

- Let M be a Riemannian manifold, U ⊂ M an open set, f : U → M a diffeomorphism onto its image.
- A compact *f*-invariant Λ ⊂ U is a hyperbolic set if there exist constants λ > 1 and c > 0 such that each x ∈ Λ admits a splitting T<sub>x</sub>M = E<sup>s</sup>(x) ⊕ E<sup>u</sup>(x) for which
  - $df_x(E^s(x)) = E^s(f(x))$  and  $df_x(E^u(x)) = E^u(f(x));$

• 
$$\|df_x^n(v)\| \leq c\lambda^{-n}\|v\| \ \forall v \in E^s(x);$$

• 
$$\|df_x^{-n}(f)\| \leq c\lambda^{-n}\|v\| \ \forall v \in E^u(x)$$

• In this setting, we say f is uniformly hyperbolic on  $\Lambda$ .

**Example:** A hyperbolic fixed point of a linear map (or flow)  $\mathbb{R}^2 \to \mathbb{R}^2$ :



Dominic Veconi (International Centre for The SRB measures and topological singular hyperl

### Stable and unstable submanifolds

- For each  $x \in \Lambda$ , there are embedded discs  $W_{loc}^s$  and  $W_{loc}^u$  of U containing x so that  $T_x W_{loc}^s(x) = E^s(x)$  and  $T_x W_{loc}^u(x) = E^u(x)$ , and for which there is a C > 0,  $0 < \alpha < 1$  such that for  $x \in U$ ,
  - $f(W_{\text{loc}}^s(x)) = W_{\text{loc}}^s(f(x))$  and  $f(W_{\text{loc}}^u(x)) = W_{\text{loc}}^u(f(x))$ ;

• 
$$\rho(f^n(x), f^n(y)) \leq C \alpha^n \rho(x, y) \ \forall y \in W^s_{\text{loc}}(x);$$

- $\rho(f^{-n}(x), f^{-n}(y)) \leq C\alpha^n \rho(x, y) \ \forall y \in W^u_{\mathrm{loc}}(x).$
- We call  $E^{s}(x)$ ,  $E^{u}(x)$  the stable/unstable subspaces and  $W^{s}_{loc}(x)$ ,  $W^{u}_{loc}(x)$  the stable/unstable submanifolds at  $x \in U$ .

**Example:** A hyperbolic fixed point of a nonlinear map (or flow)  $\mathbb{R}^2 \to \mathbb{R}^2$ :



### Example: Smale-Williams Solenoid

• Consider a map  $F:\mathbb{S}^1 imes\mathbb{D} o\mathbb{S}^1 imes\mathbb{D}$  of the solid torus given by

$$F(\varphi, x, y) = \left(2\varphi, \frac{1}{2}\cos(\varphi) + \frac{1}{5}x, \frac{1}{2}\sin(\varphi) + \frac{1}{5}y\right)$$

• F is expanding in the  $\mathbb{S}^1$  direction, and contracting in the  $\mathbb{D}$  direction.



- The attractor is the set  $\Lambda = \bigcap_{n \ge 0} F(\mathbb{S}^1 \times \mathbb{D})$ . Topologically, it carries all of the asymptotic information about F.
- More generally, an *attractor* of a topological dynamical system  $f: \Omega \to \Omega$  is a subset  $\Lambda \subset \Omega$  for which there is an open  $U \supset \Lambda$  for which  $\bigcap_{n\geq 0} f^n(U) = \Lambda$ . (In general, it may not be unique!)

- How do we observe "long-term behavior"?
- A topological attractor of a dynamical system  $f : U \to M$  is a closed subset of the form  $\Lambda = \bigcap_{n>0} f^n(U)$ , i.e., "where points end up."
- But does the attractor resemble *every* orbit? Does every orbit "look like" the attractor?
- If K ⊂ M is f-invariant (i.e., f(K) ⊂ K), f is transitive on K if for every pair of open subsets V<sub>1</sub>, V<sub>2</sub> ⊂ K, there is an n ≥ 1 for which f<sup>n</sup>(V<sub>1</sub>) ∩ V<sub>2</sub> ≠ Ø.
  - Transitive dynamical systems are topologically indecomposable.
- Suppose μ is an f-invariant probability measure on M (i.e., μ(f<sup>-1</sup>(A)) = μ(A) for all A ⊂ M). f is ergodic if every invariant subset K ⊂ M has μ(K) = 1 or μ(K) = 0.

• Ergodic dynamical systems are *measurably indecomposable*.

# Ergodic theory and probability theory

- If a dynamical system f : U → M has sensitive dependence on initial conditions, computing orbits explicitly and for all time is often impossible. But the *statistical behavior* is often quite regular.
- Recall that a sequence of identically distributed random variables  $X_0, X_1, X_2, \ldots$  with expectation  $\mathbb{E}[X_1] < \infty$  satisfies the *law of large numbers* if

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\xrightarrow{n\to\infty}\mathbb{E}[X_{1}]\right]=1.$$

• If  $\varphi: M \to \mathbb{R}$  and  $\mu$  is an *f*-invariant probability measure on *M*, then  $(\varphi \circ f^n)_{n \ge 0}$  is a sequence of identically distributed random variables.

#### Theorem

f  $\Omega$  is a compact metrizable space,  $f : \Omega \to \Omega$  measurable,  $\mu$  an f-inv. prob. measure on  $\Omega$  with respect to which f is ergodic, then:

$$\mu\left\{x\in\Omega:\frac{1}{n}\sum_{i=0}^{n-1}\varphi(f^{i}(x))\xrightarrow{n\to\infty}\int_{\Omega}\varphi\,d\mu\,\forall\varphi\in C^{0}(\Omega)\right\}=1.$$

 In other words, ergodic dynamical systems obey the law of large numbers for every φ : Ω → ℝ:

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\xrightarrow{n\to\infty}\mathbb{E}[X_{1}]\right]=1.$$

# Physical measures

- But many invariant measures are not ergodic.
- If  $\mu$  is *f*-invariant, its *basin* is

$$\mathcal{B}_{\mu} = \left\{ x \in \Omega : \frac{1}{n} \sum_{i=0}^{n-1} \varphi(f^{i}(x)) \xrightarrow{n \to \infty} \int_{\Omega} \varphi \, d\mu \, \forall \varphi \in C^{0}(\Omega) \right\}.$$

- $\mathcal{B}_{\mu}$  is the set of points whose long-term behavior is described *statistically* by the measure  $\mu$ .
- The basin of a topological attractor Λ ⊂ Ω, on the other hand, is the largest open set B<sub>Λ</sub> of points for which ∩<sub>n>0</sub> f<sup>n</sup>(B<sub>Λ</sub>) = Λ.
  - B<sub>Λ</sub> is the set of points whose long-term behavior is described topologically by the attractor Λ.
- Suppose our dynamical system is  $f: U \to M$ , M a Riemannian manifold,  $U \subset M$  open,  $\mu$  an f-invariant measure on M, m the Riemannian measure on M (typically not f-invariant). Then  $\mu$  is a *physical measure* if  $m(\mathcal{B}_{\mu}) > 0$  (long-term behavior is "physically observable").

# SRB measures

- In the case of hyperbolic dynamical systems f : U → M, what do physical measures "look like" (i.e. what are their supports)?
- Intuitively, they're supported on hyperbolic attractors.
  - Recall that for the Smale-Williams solenoid (and hyperbolic attractors Λ in general), W<sup>u</sup><sub>loc</sub>(z) ⊂ Λ.



- An *f*-inv. physical measure  $\mu$  is a *Sinai-Ruelle-Bowen (SRB) measure* if the conditional measures on the unstable leaves  $W_{loc}^{u}(z)$  are absolutely continuous with respect to Lebesgue measure.
- For the solenoid, locally the SRB measure is a product of Lebesgue measure on the circle, and the Bernoulli measure on the Cantor set.
- For diffeomorphisms of compact manifolds f : M → M that are uniformly hyperbolic everywhere (Anosov diffeomorphisms), the SRB measure is equivalent to Lebesgue.

### Theorem (Sinai '72, Bowen, Ruelle '75, Ruelle '76)

Suppose *M* is compact,  $f : U \to M$  is  $C^{1+\alpha}$  and  $\Lambda = \bigcap_{n\geq 0} f^n(U)$  is uniformly hyperbolic. Then there are at most finitely many ergodic SRB measures on  $\Lambda$ . If, furthermore,  $f|_{\Lambda}$  is topologically transitive, then there is a unique SRB measure  $\mu$  on  $\Lambda$ , and  $\mathcal{B}_{\mu}$  has full measure in *U*.

### Theorem (Hu, Young '95)

There is a  $C^2$  diffeomorphism  $f : \mathbb{T}^2 \to \mathbb{T}^2$  that is nonuniformly hyperbolic (i.e., the rate of expansion in the direction  $E^u$  is nonuniform) and does not admit an SRB measure.

### Theorem (Rodriguez-Hertz, Rodriguez-Hertz, Tahzibi, Ures '10)

If  $f : M \to M$  is a topologically transitive  $C^{1+\alpha}$  diffeomorphism of a surface M, then f admits at most one SRB measure.

# Singular hyperbolic attractors

### Setting:

- M Riemannian manifold, K ⊂ M open and precompact, N ⊂ K closed, N<sup>+</sup> = N ∪ ∂K;
- $f: K \setminus N \to K$  diffeomorphism onto its image;
- N<sup>−</sup> = image of continuous extensions of f to N<sup>+</sup> ⊂ K; or more formally,

$$N^- = \left\{ y \in K : \exists z \in N^+, z_n \in K \setminus N \text{ s.t. } z_n \to z, f(z_n) \to y 
ight\}$$

• 
$$K^+ = \{x \in K : f^n(x) \notin N^+ \ \forall n \ge 0\};$$

- $D = \bigcap_{n \ge 0} f^n(K^+)$ ,  $\Lambda = \overline{D}$  ( $\Lambda$  is the *attractor* for f).
- Λ is a singular hyperbolic attractor if there is a continuous splitting z → E<sup>s</sup>(z) ⊕ E<sup>u</sup>(z) over K \ N into stable and unstable subspaces. In particular, there are C > 0 and λ > 1 so that for any z ∈ D, n ≥ 0:

$$\|df_z^n v\| \leq C\lambda^{-n} \|v\| \quad \forall v \in E^s(z); \\ \|df_z^{-n}v\| \leq C\lambda^{-n} \|v\| \quad \forall v \in E^u(z).$$

### Example 1: Geometric Lorenz attractor

I = (-1,1), K = I × I, N = I × {0}, f : K \ N → K diffeomorphism onto its image given by f(x, y) = (φ(x, y), ψ(x, y)), where:

•  $\|\varphi_x\|, \|\psi_y^{-1}\| < 1;$ 

•  $\lim_{y\uparrow 0} f(x,y) = f_0^-$ ,  $\lim_{y\downarrow y} f(x,y) = f_0^+$  constant points:



• Here, the vertical lines form the unstable distribution  $E^u$ , and the horizontal lines form the stable distribution  $E^s$ .

• The two dots  $f_0^{\pm}$  form the set  $N^-$ , the "image" of the singular set N.

### Example: Geometric Lorenz attractor

The geometric Lorenz attractor is a Poincaré first-return map for a transverse cross-section of the flow of the classical Lorenz attractor.



### Example: Lorenz-type maps

More generally, a *Lorenz-type map* is a map  $f : K \setminus N \to K$ ,  $K = I \times I$ ,  $N = I \times \{a_0, a_1, \dots, a_{q+1}\}$ , where

$$-1 = a_0 < a_1 < \dots < a_q < a_{q+1} = 1$$

and, in addition to certain regularity conditions on df,

- $f: K \setminus N \to K$  is a diffeomorphism onto its image;
- lim f(x, y) = f<sub>i</sub><sup>-</sup>, lim f(x, y) = f<sub>i</sub><sup>+</sup> (f<sub>i</sub><sup>±</sup> ∈ K constant points, y↓a<sub>i</sub> independent of x ∈ I);
- $\|\varphi_x\|, \|\psi_y^{-1}\| < 1$ , where  $f(x, y) = (\varphi(x, y), \psi(x, y))$ .

#### Theorem (Afraimovich, Bykov, Shilnikov '83)

If *M* is a compact Riemannian manifold  $w/\dim M \ge 3$ , there exists a vector field *X* and a smooth submanifold *S* such that the first-return time map f induced on *S* by the flow given by *X* is a Lorenz-type map.

• Lozi map:  $f : K \setminus N \to K$ ,  $K = (-c, c)^2$ ,  $c \in (0, 1.5)$ ,  $N = \{0\} \times (-c, c)$ , a > 0, b > 0 sufficiently small:



$$f(x,y) = (1 + by - a|x|, x)$$

• Lozi map:  $f : K \setminus N \to K$ ,  $K = (-c, c)^2$ ,  $c \in (0, 1.5)$ ,  $N = \{0\} \times (-c, c)$ , a > 0, b > 0 sufficiently small:



• A small perturbation of the tent map  $x \mapsto 1 - a|x|$ .

• Lozi map:  $f : K \setminus N \to K$ ,  $K = (-c, c)^2$ ,  $c \in (0, 1.5)$ ,  $N = \{0\} \times (-c, c)$ , a > 0, b > 0 sufficiently small:



- A small perturbation of the tent map  $x \mapsto 1 a|x|$ .
- *f* is topologically conjugate to the *Hénon map* (quadratic instead of absolute value).

• Lozi map:  $f : K \setminus N \to K$ ,  $K = (-c, c)^2$ ,  $c \in (0, 1.5)$ ,  $N = \{0\} \times (-c, c)$ , a > 0, b > 0 sufficiently small:



- A small perturbation of the tent map  $x \mapsto 1 a|x|$ .
- *f* is topologically conjugate to the *Hénon map* (quadratic instead of absolute value).
- Lozi map *does not* arise as the time 1 map of a hyperbolic flow.

# Setting of main result

### Setting:

- *M* Riemannian manifold,  $K \subset M$  open/precompact,  $N \subset K$  closed;
- $f: K \setminus N \to K$  diffeomorphism onto its image;
- N<sup>−</sup> = image of continuous extensions of f to N<sup>+</sup> ⊂ K; or more formally,

$$N^{-} = \left\{ y \in K : \exists z \in N^{+}, z_{n} \in K \setminus N \text{ s.t. } z_{n} \rightarrow z, f(z_{n}) \rightarrow y \right\}$$

(for example,  $N^- = \{f_i^{\pm} : 1 \le i \le q\}$  for Lorenz-type maps, where  $f_i^+ = \lim_{y \downarrow a_i} f(x, y)$  and  $f_i^- = \lim_{y \uparrow a_i} f(x, y)$ );

• A a singular hyperbolic attractor, expansive constant  $\lambda > 1$ .

#### Theorem (Pesin '92)

Suppose  $f : K \setminus N \to K$  admits a singular hyperbolic attractor  $\Lambda$ . Then with certain regulatory assumptions, there are at most countably many ergodic SRB measures supported on  $\Lambda$ .

## Main result

Assumptions:

- N is a disjoint union of finitely many closed submanifolds N<sub>1</sub>,..., N<sub>m</sub> of dimension equal to codim(W<sup>u</sup><sub>loc</sub>);
- 2 The local unstable manifolds  $W_{loc}^{u}(x)$  intersect the singular set N transversally, with angle uniformly bounded away from 0;
- The stable foliation is *locally continuous*: the local stable curves W<sup>s</sup><sub>loc</sub>(z) (and in particular their length) vary continuously with z.

### Theorem (V. '22)

- If f : K \ N → K as above satisfies Assumptions 1, 2, 3, then the attractor Λ admits finitely many ergodic SRB measures μ<sub>1</sub>,..., μ<sub>n</sub>.
- If f also satisfies Assumption 4, then there is a finite collection of f-invariant subsets  $\Lambda_1, \ldots, \Lambda_n$ , clopen in  $\Lambda$ , each supporting a unique SRB measure. (In particular, if  $f|_{\Lambda} : \Lambda \to \Lambda$  is transitive, f admits a unique SRB measure.)

### Lorenz and Lozi revisited

 This implies, in particular, that the attractors for both Lorenz-type maps and the Lozi map admit finitely many SRB measures. (Recall that W<sup>u</sup><sub>loc</sub>(x) lies inside the attractor Λ for all x ∈ Λ where W<sup>u</sup><sub>loc</sub>(x) is defined.)



18 / 33

- Assumption that N is a finite union of submanifolds is required for arguments. Result may not hold if N has infinitely many components.
- Example: Take a countable number of horizontal lines in  $(-1,1)^2$ .
- In each resulting section, embed a copy of the geometric Lorenz attractor.
- Each section admits its own SRB measure.
- The proof of the main result requires a lower bound on the distance between components of *N*, which we don't have in this example.

#### Theorem (Sataev '92)

Suppose  $f : K \setminus N \to K$  is a singular hyperbolic map for which we have: **3**  $\exists B, \beta, \varepsilon_0 > 0$  for which  $\forall n \ge 0, 0 < \varepsilon < \varepsilon_0$ :

 $\operatorname{Vol}\left(f^{-n}(B_{\varepsilon}(N))\right) < B\varepsilon^{\beta}$ 

where  $B_{\varepsilon}(N) := \{z \in K : \rho(z, N) < \varepsilon\}$ ;

② ∃ β, ε<sub>1</sub> > 0 for which: whenever V ⊂ K is a manifold tangent to the unstable cone, ∃ B<sub>0</sub> = B<sub>0</sub>(V) s.t. ∀0 < ε < ε<sub>1</sub>: ∀n ≥ 0:

 $\operatorname{Vol}_V \left( V \cap f^{-n}(B_{\varepsilon}(N)) \right) \leq B_0 \varepsilon^{\beta}.$ 

Then there are finitely many disjoint invariant sets  $\Lambda_1, \ldots, \Lambda_n$  and ergodic SRB measures  $\mu_1, \ldots, \mu_n$  with  $\mu_i(\Lambda_i) = 1$  for each *i*, and  $f|_{\Lambda_i}$  topologically transitive.

### Earlier similar result in discrete setting

#### • Recall our assumptions:

- N is a disjoint union of finitely many closed submanifolds N<sub>1</sub>,..., N<sub>m</sub> of dimension equal to codim(W<sup>u</sup>);
- The local unstable manifolds W<sup>u</sup><sub>loc</sub>(x) intersect the singular set N transversally, with angle uniformly bounded away from 0;
- $\ \, {} { \ \, { 0 } } \ \, f^k(N^-)\cap N= \varnothing \ \, { \rm for} \ \, 0\leq k<\ell, \ \, \lambda^\ell>2;$

### Theorem (Pesin '92)

In dimension 2, these assumptions imply the recurrence hypotheses of previous theorem.

• These three assumptions do not give existence in dimensions higher than 2. However, if hold for a higher-dimensional singular hyperbolic map, these assumptions still imply that there are *at most* finitely many SRBs, and the proof avoids using recurrence assumptions.

# Singular hyperbolic flows

- Let *M* be a 3-dimensional Riemannian manifold, *X* a *C<sup>r</sup>* vector field with flow *X*<sub>t</sub>.
- A compact  $X_t$ -invariant subset  $\Lambda \subset M$  is singular hyperbolic if
  - A is partially hyperbolic, in that Λ admits an invariant splitting T<sub>Λ</sub>M = E<sup>s</sup> ⊕ E<sup>c</sup> for which d(X<sub>t</sub>)|<sub>E<sup>s</sup></sub> is contracting, E<sup>s</sup> dominates E<sup>c</sup>, and E<sup>c</sup> is volume-expanding: there are K > 0 and λ > 0 for which:

$$\|d(X_t)|_{E^s}\| \leq Ke^{-\lambda t};$$
  
 $\|d(X_t)|_{E^s}\| \cdot \|d(X_t)|_{E^c}\| \leq Ke^{-\lambda t};$   
 $|J(d(X_t)|_{E^c})| \geq Ke^{\lambda t}$  (where  $J$  is the Jacobian)

- **2** all singularities of X contained in  $\Lambda$  are hyperbolic (here "singularities" just means fixed points of the flow, or points  $z \in M$  where X(z) = 0).
- The standard Lorenz system is an example of such a flow.

### Theorem (Pacifico, Morales '07)

A singular hyperbolic attractor for a flow with dense periodic orbits and a unique singularity is a finite union of transitive sets. (If the vector field is "Kupka-Smale", this union is disjoint.)

• "*Kupka-Smale*" essentially means that the closed orbits and critical points are hyperbolic, and the stable manifold of a critical point can intersect the unstable manifold of another critical point only transversally.

#### Theorem (Araújo, Pacifico, Pujals, Viana '07)

A transitive attracting set  $\Lambda_i$  as above supports a unique SRB measure (physical probability measure which disintegrates to an absolutely continuous measure along center-unstable leaves).

## Spectral decomposition for flows

- A consequence of these results is that a singular hyperbolic attractor Λ for a flow X on a 3-manifold M with dense periodic points is the following spectral decomposition:
  - $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_k$ , with  $\Lambda_i$  compact,  $X_t$ -invariant, and transitive;
  - There are exactly k ergodic SRB measures μ<sub>1</sub>,..., μ<sub>k</sub>, with μ<sub>i</sub> supported on Λ<sub>i</sub>. Every SRB is a convex combination of the μ<sub>i</sub>.

### Theorem (Sataev '10)

If  $\Lambda \subset M$  is a singular hyperbolic attractor for a flow X on a Riemannian *n*-manifold M whose stable distribution  $E^s$  has dimension n - 2, then  $\Lambda$  admits a spectral decomposition as above.

#### Theorem (Araújo '22)

Let X be a vector field on a 3-manifold,  $\Lambda$  a singular hyperbolic attractor, s<sub>L</sub> the number of hyperbolic singularities of X contained in  $\Lambda$ . Then the number s of ergodic SRB measures on  $\Lambda$  whose support contains a singularity is  $s \leq 2s_L$ .

- Define W<sup>u</sup>(z) = ∪<sub>n≥0</sub> f<sup>n</sup> (W<sup>u</sup><sub>loc</sub>(f<sup>-n</sup>(z))) for z ∈ K (W<sup>s</sup>(z) is defined analogously for z ∈ Λ).
- Let  $m_z^u$  and  $\rho_z^u$  be the Riemannian leaf volume and leaf metric on  $W^u(z)$ . Let  $U_0 := B^u(z, r) \subset W^u_{\text{loc}}(z)$  be the disc of  $\rho_z^u$ -radius r centered at z.

• Finally let 
$$U_n = f(U_{n-1}) \setminus N^+$$
.

Let J<sup>u</sup>(z) = det (df|<sub>E<sup>u</sup>(z)</sub>) denote the unstable Jacobian of f at a point z ∈ Λ. For y ∈ W<sup>u</sup>(z), set

$$\kappa(z,y) = \prod_{j=0}^{\infty} \frac{J^{u}\left(f^{-j}(z)\right)}{J^{u}\left(f^{-j}(y)\right)}$$

### Construction of SRB measures (cont.)

• Define the measures  $\widetilde{\nu}_n$  on  $U_n \subset W^u(f^n(z))$  by

$$d\widetilde{\nu}_n(y) = \widetilde{C}_n(z)\kappa(f^n(z), y)dm_z^u(y),$$

where  $\widetilde{C}_n(z)$  is a normalizing factor.

- Let  $\nu_n$  be the measure on  $\Lambda$  given by  $\nu_n(A) = \tilde{\nu}_n(A \cap U_n)$  for Borel  $A \subset \Lambda$ .
- Define:

$$\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} \nu_k$$

 The final step in the construction is to show μ<sub>n</sub> has an *f*-invariant weak limit measure μ concentrated on D. (Note μ may depend on the reference point z.)

## Proof of finiteness: Preliminary constructions

- Recall  $K^+ = \{x \in K : f^n(x) \notin N^+ \ \forall n \ge 0\}$  and  $D = \bigcap_{n \ge 0} f^n(K^+)$ .
- Given  $x \in D$ , in a neighborhood of size  $\delta > 0$  of x, the unstable manifold  $W^{u}(x)$  is a graph of a  $C^{1+\alpha}$  function  $E^{u}(x) \to E^{s}(x)$ . Let  $W^{u}_{\delta}(x)$  be the component of  $W^{u}(x) \cap B_{\delta}(x) \cap D$  containing x.
- Given  $\delta > 0$ , let  $B_{\delta}^{-} \subset D$  consist of those  $x \in D$  for which  $W_{\delta}^{u}(y)$  exists and contains x, for some  $y \in D$ .
- Suppose  $\delta_1 < \delta_2$ . Then  $B^-_{\delta_2} \subseteq B^-_{\delta_1}$ .
  - Indeed, if  $x \in B_{\delta_2}^-$ , then  $x \in W_{\delta_2}^u(y)$  for some  $y \in D$ .
  - By certain regularity hypotheses, D ∩ W<sup>u</sup><sub>δ2</sub>(y) has full measure, so can pick y' ∈ W<sup>u</sup><sub>δ2</sub>(y) that is with δ<sub>1</sub>-distance to x.
  - Follows that x ∈ B<sup>−</sup><sub>δ1</sub>.

#### Lemma

There exists a  $\delta_0 > 0$  so that if  $\mu$  is an ergodic SRB measure of  $f : \Lambda \to \Lambda$ ,  $\mu(B_{\delta_0}^-) > 0$ .

Dominic Veconi (International Centre for The SRB measures and topological singular hyperl

# Proving lemma

- B<sup>-</sup><sub>δ</sub> is the set of points whose local unstable leaves have radius δ > 0.
- Recall  $N = \bigcup_{i=1}^{m} N_i$ , and if U is a neighborhood of N, then f(U) is a neighborhood of  $N^-$ .
- Since  $f^k(N^-) \cap N = \emptyset$  for  $1 \le k < \ell$ ,  $\lambda^\ell > 2$  ( $\lambda > 1$  expansive constant), and N and  $f^\ell(N^-)$  are closed, there is a radius Q > 0 so that:
  - the open neighborhoods  $B_Q(N_i)$ ,  $1 \le i \le m$ , are disjoint;
  - $f^k(B_Q(N_i)) \cap N = \emptyset$  for  $1 \le k < \ell$ .
- We let  $\delta_0 < Q$ .
- Choose ergodic SRB measure μ, and μ-generic point x ∈ D. Using hyperbolic product structure, construct rectangle R of stable leaves of radius β > 0 and unstable leaves of radius α > 0. Then μ(R) > 0.
- f(R) is a rectangle whose unstable leaves have length  $\lambda \alpha$ .

# Proving lemma (cont)

- Idea: Use iterates of R to extend the unstable leaves until they are of radius  $\geq \delta_0$ . Once this happens,  $f^k(R) \subset B_{\delta_0}^-$ , and  $\mu(B_{\delta_0}^-) > \mu(f^k(R)) = \mu(R) > 0.$
- **Obstruction:** What if  $f^k(R) \cap N \neq \emptyset$  before  $\lambda^k \alpha > \delta_0$ ?
- Since  $\delta_0 > Q$ , Q = radius of disjoint neighborhoods of components of N,  $f^{j}(R)$  lies in one of these neighborhoods.
- Choose new rectangle  $R_1$  of radius  $\alpha_1 \geq \frac{1}{2}\lambda^k \alpha$ .



# Proving lemma (cont)

- Iterate R<sub>1</sub> until either:
  - $\lambda^k \alpha_1 \geq \delta_0$  (in which case  $\mu(B^-_{\delta_0}) > 0$ , and we're done); or
  - $f^{k_1}(R_1) \cap N \neq \emptyset$  for some  $j_1 \ge \ell$  (since  $R_1 \subset B_Q(N_i)$ ).
- In latter case, take new rectangle R<sub>2</sub> ⊂ f<sup>k1</sup>(R<sub>1</sub>) \ N with unstable leaves of radius α<sub>2</sub> ≥ <sup>1</sup>/<sub>2</sub>λ<sup>k1</sup>α<sub>1</sub>.
- Repeat this process. Each time a rectangle intersects *N*, we take a leaf of at least half the radius, creating a sequence of rectangles {*R<sub>m</sub>*} with unstable leaves of radii

$$\alpha_m \geq \frac{1}{2^m} \lambda^{k_1 + \dots + k_m} \alpha_1 > \frac{\lambda^{\ell m}}{2^m} \alpha_1 = \left(\frac{\lambda^{\ell}}{2}\right)^m \alpha_1,$$

with each  $k_m \ge \ell$  the time it takes for  $R_m$  to intersect N.

• Since  $\lambda^{\ell} > 2$ , this will eventually exceed  $\delta_0$ , at which point  $0 < \mu(R_m) \le \mu(B_{\delta_0}^-)$ .

## Proving finiteness: Hopf argument

- The main result is proven once we show  $B_{\delta_0}^-$  is charged by at most finitely many ergodic SRB measures.
- Let  $\Lambda^\pm \subset \Lambda$  be the points on which the limits

$$\varphi_{\pm}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi|_{\Lambda} \left( f^{\pm k}(x) \right)$$

both exist for every  $\varphi \in C^0(K)$ . Then  $\mu(\Lambda^{\pm}) = 1$  by Birkhoff ergodic theorem, w.r.t. any invariant  $\mu$ .

We have:

 $egin{aligned} y \in W^{s}_{\delta}(x) & \Longleftrightarrow & d(f^{n}(x),f^{n}(y)) \xrightarrow{n o \infty} 0, \ y \in W^{u}_{\delta}(x) & \Longleftrightarrow & d(f^{-n}(x),f^{-n}(y)) \xrightarrow{n o \infty} 0. \end{aligned}$ 

In particular,  $\varphi_+$  is constant on stable leaves and  $\varphi_-$  is constant on unstable leaves, for all  $\varphi \in C^0(M)$ .

# Proving finiteness: Hopf argument (cont)

- Idea: Construct a closed (in K) subset  $\Lambda^0 \subset B_{\delta_0}^-$  for which:
  - $\varphi_{\pm} = \varphi_{-}$  Leb-a.e. on unstable manifolds  $W^{u}_{\delta}(x)$ , and
  - **2**  $\Lambda^0 \subset B^-_{\delta_0}$  has full measure with respect to any invariant measure.
- Partition Λ<sup>0</sup> into equivalence classes on which φ<sub>+</sub> is constant (note each W<sup>u</sup><sub>δ</sub>(x) is contained in an equivalence class).
- Use the *local product structure* of the local foliations  $W^s_{\delta}$  and  $W^u_{\delta}$  to show that each equivalence class is open.
- Since  $\Lambda^0$  is compact, there may only be finitely many such equivalence classes.
- Any SRB measure charging  $\Lambda^0$  is supported (in  $\Lambda^0)$  on a union of these equivalence classes.
- Since Λ<sup>0</sup> is of full measure with respect to any invariant measure, and each equivalence class supports exactly one *ergodic* SRB measure (recall Ergodic Theorem), there may be only finitely many ergodic SRBs.

# Muito obrigado!

#### **References:**

- V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov. On attracting nonstructurally stable limit sets of Lorenz attractor type, *Trudy Moskov. Mat. Obshch.* **44**:150-212, 1983.
- R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. *Lecture Notes in Mathematics* **470**, Springer-Verlag, Berlin. 1975.
- E. Clay, B. Hasselblatt, E. Pujals. Desingularization of surface maps, *Electron. Res.* Announc. 24:1-9, 2017.
- V. Climenhaga, S. Luzzatto, Y. Pesin. The geometric approach for constructing Sinai-Ruelle-Bowen measures (Survey). J. Stat. Phys. 166:467-493, 2016.
- Y. Pesin. Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. *Ergod. Th. & Dynam. Sys.* **12**:123-151, 1992.
- F. Rodriguez-Hertz, M. A. Rodriguez-Hertz, A. Tahzibi, R. Ures. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces, *Commun. Math. Phys.*, 306(1):35-49, 2011.
- D. Ruelle. A measure associated with axiom-A attractors. Amer. J. Math 98(3):619-654, 1976.
- Y. Sinai. Markov partitions and Y-diffeomorphisms. *Funct. Anal. and Appl.* 2(1):64-89, 1968.
- D. Veconi. SRB measures of singular hyperbolic attractors. To appear in *Discrete and Contin. Dyn. Sys.* 2022.

3

(日) (同) (三) (三)