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Hyperbolic sets

Let M be a Riemannian manifold, U ⊂ M an open set, f : U → M a
diffeomorphism onto its image.
A compact f -invariant Λ ⊂ M is a hyperbolic set if there exist
constants λ > 1 and c > 0 such that each x ∈ Λ admits a splitting
TxM = E s(x)⊕ Eu(x) for which

(dfx)(E s(x)) = E s(f (x)) and (dfx)(E u(x)) = E u(f (x));
‖df nx (v)‖ ≤ cλ−n‖v‖ ∀v ∈ E s(x);
‖df −nx (f )‖ ≤ cλ−n‖v‖ ∀v ∈ E u(x).

In this setting, we say f is uniformly hyperbolic on Λ.
here are foliations W s and W u of U so that TxW

s(x) = E s(x) and
TxW

u(x) = Eu(x), and for which there is a C > 0, 0 < α < 1 such
that for x ∈ U,

f (W s(x)) = W s(f (x)) and f (W u(x)) = W u(f (x));
ρ(f n(x), f n(y)) ≤ Cαnρ(x , y) ∀y ∈W s(x);
ρ(f −n(x), f −n(y)) ≤ Cαnρ(x , y) ∀y ∈W u(x).

We call E s(x), Eu(x) the stable/unstable subspaces and W s(x),
W u(x) the stable/unstable submanifolds at x ∈ U.
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Example: Anosov diffeomorphisms

If Λ = M is a hyperbolic set for f , then f is an Anosov
diffeomorphism.

Consider the linear automorphism A =

(
2 1
1 1

)
∈ SL(2,Z). Let

f : T2 → T2 be the induced map on T2 = R2/Z2.

A has two eigendirections corresponding to the eigenvalues
λ−1 < 1 < λ. These affine eigenspaces at each point in R2 descend
to stable/unstable manifolds in T2.

Dominic Veconi (International Centre for Theoretical Physics)SRB measures of singular hyperbolic attractors February 24 2022 3 / 28



Example: Smale-Williams Solenoid

Consider a map F : S1 × D→ S1 × D of the solid torus given by

F (ϕ, x , y) =

(
2ϕ,

1

2
cos(ϕ) +

1

5
x ,

1

2
sin(ϕ) +

1

5
y

)
Near the direction of S1, this map is expanding; in the direction of D,
the map is contracting.

Notice: The toral automorphism f : T2 → T2 preserved Lebesgue
area. The solenoid map F : S1 × D→ S1 × D does not preserve
volume; in fact, the solenoid map is dissipative with respect to
volume.
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Singular hyperbolic attractors

Setting:

M Riemannian manifold, K ⊂ M open and precompact, N ⊂ K
closed, N+ = N ∪ ∂K ;

f : K \ N → K diffeomorphism onto its image;

N− = image of continuous extensions of f to N+ ⊂ K ; or more
formally,

N− =
{
y ∈ K : ∃z ∈ N+, zn ∈ K \ N s.t. zn → z , f (zn)→ y

}
K+ = {x ∈ K : f n(x) 6∈ N+ ∀n ≥ 0};
D =

⋂
n≥0 f

n(K+), Λ = D (Λ is the attractor for f ).

Λ is a singular hyperbolic attractor if there is a continuous splitting
z 7→ E s(z)⊕ Eu(z) over K \N into stable and unstable subspaces. In
particular, there are C > 0 and λ > 1 so that for any z ∈ D, n ≥ 0:

‖df nz v‖ ≤ Cλ−n ‖v‖ ∀v ∈ E s(z);∥∥df −nz v
∥∥ ≤ Cλ−n ‖v‖ ∀v ∈ Eu(z).
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Example 1: Geometric Lorenz attractor

I = (−1, 1), K = I × I , N = I × {0}, f : K \ N → K given by
f (x , y) =

(
ϕ(x , y), ψ(x , y)

)
, where

ϕ(x , y) = (sgn(y)Bx |y |ν − B|y |ν0 + 1) sgn(y)

ψ(x , y) = ((1 + A)|y |ν0 − A) sgn(y)

where 0 < A < 1, 0 < B < 1
2 , ν > 1, and 1/(1 + A) < ν0 < 1.

The two dots form the set N−, the “image” of the singular set N.
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Example: Geometric Lorenz attractor

The geometric Lorenz attractor is a Poincaré first-return map for a
transverse cross-section of the flow of the classical Lorenz attractor.
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Example: Lorenz-type maps

More generally, a Lorenz-type map is a map f : K \ N → K , K = I × I ,
N = I × {a0, a1, . . . , aq+1}, where

−1 = a0 < a1 < · · · < aq < aq+1 = 1

and, in addition to certain regularity conditions on df ,

lim
y↑ai

f (x , y) = f −i , lim
y↓ai

f (x , y) = f +
i (f ±i ∈ K \ N constant points,

independent of x ∈ I );

f |I×(ai ,ai+1) : I × (ai , ai+1)→ K is a diffeomorphism onto its image;

‖ϕx‖ ,
∥∥ψ−1

y

∥∥ < 1, where f (x , y) =
(
ϕ(x , y), ψ(x , y)

)
.

Theorem (Afraimovich, Bykov, Shilnikov ’83)

If M is a compact Riemannian manifold w/ dimM ≥ 3, there exists a
vector field X and a smooth submanifold S such that the first-return time
map f induced on S by the flow given by X is a Lorenz-type map.
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Example: Lozi attractor

Lozi map: A simplified Hénon map f : K \ N → K , K = (−c , c)2,
c ∈ (0, 1.5), N = {0} × (−c , c), a > 0, b > 0 sufficiently small:

f (x , y) = (1 + by − a|x |, x)

In this case, the map is continuous on N, but not differentiable.
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SRB measures

Suppose f : U → M is a hyperbolic map on a Riemannian manifold
M. An SRB measure is an invariant Borel probability measure µ for
which:

f has positive Lyapunov exponents µ-a.e., and
µ admits absolutely continuous conditional measures on the unstable
leaves W u(x) (w.r.t. Riemannian leaf volume)

SRB measures are hyperbolic physical measures: m(Bµ) > 0, where
m is the Lebesgue/Riemannian volume and Bµ is the basin of µ:

Bµ :=

{
x :

1

n

n−1∑
k=0

(
ϕ ◦ f k

)
(x)

n→∞−−−→
∫
U
ϕ dµ ∀ϕ ∈ C 0

}
In ergodic theory, invariant measures correspond to stationary
distributions in probability theory. So SRB measures are stationary
distributions that satisfy the strong law of large numbers on a set of
positive volume.
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Conservative and dissipative systems

If f : M → M is an area-preserving diffeomorphism (e.g. Anosov
map), then the Lebesgue/Riemannian volume is an SRB measure.

What if f is dissipative? Recall the solenoid map:

The attractor Ω =
⋂

n≥1 F
n(S1 ×D) is locally a product of an interval

and a Cantor set. In particular, it has Lebesgue measure 0.

The SRB measure is a product of normalized Lebesgue measure on
S1 = R/2πR and the Bernoulli measure on the Cantor set.
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SRB measures for hyperbolic maps

Theorem (Sinai ’72, Bowen, Ruelle ’75, Ruelle ’76)

Suppose f : U → M is C 1+α and Λ =
⋂

n≥0 f
n(U) is uniformly hyperbolic.

Then there are at most finitely many ergodic SRB measures on Λ. If,
furthermore, f |Λ is topologically transitive, then there is a unique SRB
measure µ on Λ, and Bµ has full measure in U.

Theorem (Rodriguez-Hertz, Rodriguez-Hertz, Tahzibi, Ures ’10)

If f : M → M is a topologically transitive C 1+α diffeomorphism, then it
admits at most one SRB measure.

Theorem (Pesin ’92)

Suppose f : K \ N → K admits a singular hyperbolic attractor Λ. Then
there are at most countably many ergodic SRB measures supported on Λ.
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Stable and unstable manifolds

We use unstable manifolds to construct SRB measures.

Assume f : K \N → K is singular hyperbolic with attractor Λ, and let
ρ denote the Riemannian distance in M ⊃ K , m the Riemannian
measure.

Theorem (Pesin ’92)

For m-a.e. every z ∈ K \ N, there are embedded submanifolds W s
loc(z)

and W u
loc(z) containing z for which TzW

s
loc(z) = E s(z) and

TzW
u
loc(z) = Eu(z). Furthermore, there is an α < 1 and C > 0 for which,

for all n ≥ 0, letting ρ denote Riemannian distance,

ρ(f n(x), f n(y)) ≤ Cαnρ(x , y) for x , y ∈W s
loc(z),

ρ(f −n, f −n(y)) ≤ Cαnρ(x , y) for x , y ∈W u
loc(z).

Additionally, for w ∈ N \ K sufficiently close to z , the intersection
W s

loc(z) ∩W u
loc(w) is nonempty and contains exactly one point.
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Construction of SRB measures

Define W u(z) =
⋃

n≥0 f
n (W u

loc(f −n(z))) for z ∈ K (W s(z) is defined
analogously for z ∈ Λ).

Let Ju(z) = det
(
df |Eu(z)

)
denote the unstable Jacobian of f at a

point z ∈ Λ. For y ∈W u(z), set

κ(z , y) =
∞∏
j=0

Ju
(
f −j(z)

)
Ju (f −j(y))

Let mu
z and ρuz be the Riemannian leaf volume and leaf metric on

W u(z). Let U0 := Bu(z , r) ⊂W u
loc(z) be the disc of ρuz -radius r

centered at z .

Finally let Un = f (Un−1) \ N+.
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Construction of SRB measures (cont.)

Define the measures ν̃n on Un ⊂W u(f n(z)) by

d ν̃n(y) = C̃n(z)κ(f n(z), y)dmu
z (y),

where C̃n(z) is a normalizing factor.

Let νn be the measure on Λ given by νn(A) = ν̃n(A ∩ Un) for Borel
A ⊂ Λ.

Each νn is defined only on subsets of a particular unstable manifold
W u(f n(z)).

Define:

µn =
1

n

n−1∑
k=0

νk

The final step in the construction is to show µn has an f -invariant
weak limit measure µ concentrated on D. (Note µ may depend on
the reference point z .)
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Setting of main result

Setting:

M Riemannian manifold, K ⊂ M open and precompact, N ⊂ K
closed;

f : K \ N → K diffeomorphism onto its image;

N− = image of continuous extensions of f to N+ ⊂ K ; or more
formally,

N− =
{
y ∈ K : ∃z ∈ N+, zn ∈ K \ N s.t. zn → z , f (zn)→ y

}
(for example, N− = {f ±i : 1 ≤ i ≤ q} for Lorenz-type maps, where
f +
i = lim

y↓ai
f (x , y) and f −i = lim

y↑ai
f (x , y));

Λ a singular hyperbolic attractor, expansive constant λ > 1.
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Main result

Assumptions:

1 N is a disjoint union of finitely many closed submanifolds N1, . . . ,Nm

with boundary, of dimension equal to the codimension of W u;

2 The local unstable manifolds W u
loc(x) intersect the singular set N

transversally, with angle uniformly bounded away from 0;

3 f j(N−) ∩ N = ∅ for 0 ≤ j < k , λk > 2.

Theorem (V. 2022)

If f : K \ N → K as above satisfies these assumptions, then the attractor
Λ admits finitely many ergodic SRB measures.
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Lorenz and Lozi revisited

This implies, in particular, that the attractors for both Lorenz-type
maps and the Lozi map admit finitely many SRB measures. (Observe
that W u

loc(x) lies inside the attractor Λ for all x ∈ Λ where W u
loc(x) is

defined.)
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A simple non-example

Assumption that N is a finite union of submanifolds is required for
arguments. Result may not hold if N has infinitely many components.

Example: Take a countable number of horizontal lines in (−1, 1)2.

In each resulting section, embed a copy of the geometric Lorenz
attractor.

Each section admits its own SRB measure.

The proof of the main result requires a lower bound on the distance
between components of N, which we don’t have in this example.
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Local continuity of stable foliation

Is there a connection between the number/supports of SRB measures
and the topological properties of the dynamics (e.g. topological
transitivity/transitive components)?

Given z ∈ K \ N, there is a radius r = r(z) > 0 for which
W s

loc(z) ∩ Br (z) is the graph of a C 1 function ψz : Uz → M,
Uxz ⊂ TzW

s
loc(z).

W s is locally continuous if y 7→ ψy and (y , u) 7→ d(ψy )u are
continuous over y ∈ (K \ N) ∩ Br(x)(x), u ∈ Uy ⊂ TyW

s(y). (Note
ψy is defined µ-a.e. in (K \ N) ∩ Br(x)(x), µ any SRB measure.)

In particular, the maximal radius z 7→ r(z) in which
W s

loc(z) ∩ Br(z)(z) is a C 1 curve varies continuously over Λ.
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Transitivity and ergodicity

Theorem (Pesin 1992, V. 2022)

Let f : K \ N → K be singular hyperbolic.

There is a countable collection of f -invariant subsets {Ui}i≥1, open in
Λ, for which

⋃
i≥1 Ui = Λ, and each of which is supported by exactly

one ergodic SRB measure.

If N is a finite disjoint union of embedded submanifolds of dimension
equal to the codimension of W u, and if each unstable curve W u

intersects N transversally with angle uniformly bounded away from 0,
then this collection is finite.

If f |Λ : Λ→ Λ is topologically transitive, then U1 = Λ is the only
member of this collection, and thus the ergodic SRB measure is
unique.
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Construction of ergodic components

The construction of the ergodic components Ui is due to Pesin ’92.

Let µ be an SRB measure for Λ. For µ-a.e. z ∈ Λ, W u
loc(z) ⊂ Λ and

the stable discs Bs
r(y)(y) are defined for mu

z -a.e. y ∈W u
loc(z), i.e. on

a set Au(z) ⊂W u
loc(z) of full mu

z -measure. (Recall mu
z is the

Riemannian leaf volume of W u
loc(z).)

Define the set

Q(z) =

 ⋃
y∈Au(z)

Bs
r(y)(y)

 ∩ Λ ∩ Br(z)(z).

Note µ(Q(z)) > 0.

Note Q =
⋃

n∈Z f
n(Q(z)) is f -invariant, and thus an ergodic

component of µ.

Openness of Q (mod 0) in Λ follows from the local continuity of W s

(i.e. continuity of y 7→ r(y) for y ∈W u
loc(z)).

Dominic Veconi (International Centre for Theoretical Physics)SRB measures of singular hyperbolic attractors February 24 2022 22 / 28



Proof of finiteness: Preliminary constructions

Recall K+ = {x ∈ K : f n(x) 6∈ N+ ∀n ≥ 0} and D =
⋂

n≥0 f
n(K+).

Given δ > 0, let B−δ ⊂ D consist of those x ∈ D for which W u
δ (y)

exists and contains x , for some y ∈ D.

Suppose δ1 < δ2. Then B−δ2
⊆ B−δ1

.

Indeed, if x ∈ B−δ2
, then x ∈W u

δ2
(y) for some y ∈ D.

By certain regularity hypotheses, D ∩W u
δ2

(y) has full measure, so can
pick y ′ ∈W u

δ2
(y) that is with δ1-distance to x .

Follows that x ∈ B−δ1
.

Lemma

There exists a δ0 > 0 so that if µ is an ergodic SRB measure of f : Λ→ Λ,
µ(B−δ0

) > 0.
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Proving first lemma

B−δ is the set of points whose local unstable leaves have radius δ > 0.

Recall N =
⋃m

i=1 Ni , and if U is a neighborhood of N, then f (U) is a
neighborhood of N−.

Since f j(N−) ∩ N = ∅ for 1 ≤ j < k, λk > 2 (λ > 1 expansive
constant), and N and f k(N−) are closed, there is a radius Q > 0 so
that:

the open neighborhoods BQ(Ni ), 1 ≤ i ≤ m, are disjoint;
f j(BQ(Ni )) ∩ N = ∅ for 1 ≤ j < k .

We let δ0 < Q.

Choose ergodic SRB measure µ, and µ-generic point x ∈ D. Using
hyperbolic product structure, construct rectangle R of stable leaves of
radius β > 0 and unstable leaves of radius α > 0. Then µ(R) > 0.

f (R) is a rectangle whose unstable leaves have length λα.

Dominic Veconi (International Centre for Theoretical Physics)SRB measures of singular hyperbolic attractors February 24 2022 24 / 28



Proving first lemma (cont)

Idea: Use iterates of R to extend the unstable leaves until they are of
radius ≥ δ0. Once this happens, f j(R) ⊂ B−δ0

, and

µ(B−δ0
) > µ(f j(R)) = µ(R) > 0.

Obstruction: What if f j(R) ∩ N 6= ∅ before λjα > δ0?
Since δ0 > Q, Q = radius of disjoint neighborhoods of components of
N, f j(R) lies in one of these neighborhoods.
Choose new rectangle R1 of radius α1 ≥ 1

2λ
jα.
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Proving first lemma (cont)

Iterate R1 until either:

λjα1 ≥ δ0 (in which case µ(B−δ0
) > 0, and we’re done); or

f j1 (R1) ∩ N 6= ∅ for some j1 ≥ k (since R1 ⊂ BQ(Ni )).

In latter case, take new rectangle R2 ⊂ f j1(R1) \ N with unstable
leaves of radius α2 ≥ 1

2λ
j1α1.

Repeat this process. Each time a rectangle intersects N, we take a
leaf of at least half the radius, creating a sequence of rectangles {R`}
with unstable leaves of radii

α` ≥
1

2`
λj1+···+j`α1 >

λk`

2`
α1 =

(
λk

2

)l

α1,

with each j` ≥ k the time it takes for R` to intersect N.

Since λk > 2, this will eventually exceed δ0, at which point
0 < µ(R`) ≤ µ(B−δ0

).
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Proving finiteness

The main result is proven once we show B−δ0
is charged by at most

finitely many ergodic SRB measures

Let Λ0 ⊂ Λ be the points on which the limits

ϕ±(x) = lim
n→∞

1

n

n−1∑
k=0

ϕ|Λ
(
f ±k(x)

)
both exist for every ϕ ∈ C 0(K ). Then µ(Λ0) = 1 by Birkhoff ergodic
theorem, w.r.t. any invariant µ.

Partition Λ0 into equivalence classes on which ϕ+ and ϕ− are
constant (and equal).

These equivalence classes are clopen in Λ. Since Λ is compact, there
are at most finitely many equivalence classes.

Any ergodic SRB measure on Λ is supported on one of these
equivalence classes, and each equivalence class can support at most
one SRB measure.
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