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Abstract. We develop a thermodynamic formalism for a smooth realization
of pseudo-Anosov surface homeomorphisms. In this realization, the singular-

ities of the pseudo-Anosov map are assumed to be fixed, and the trajectories

are slowed down so the differential is the identity at these points. Using Young
towers, we prove existence and uniqueness of equilibrium states for geometric

t-potentials. This family of equilibrium states includes a unique SRB measure

and a measure of maximal entropy, the latter of which has exponential decay
of correlations and the Central Limit Theorem.

.

1. Introduction

In [4], W. Thurston classified linear automomorphisms of the torus into three
classes, according to the eigenvalues of the automorphism A ∈ SL(2,Z):

• Diagonalizable automorphisms with eigenvalues of modulus 1 (rotations);
• Nondiagonalizable automorphisms (Dehn twists);
• Automorphisms with eigenvalues of modulus 6= 1 (Anosov diffeomorphisms).

In this same work, Thurston went on to classify homeomorphisms of any surface up
to isotopy class. The principle was quite similar, and is now known as the Nielson-
Thurston classification of elements of mapping class groups. This is summarized in
the following theorem:

Theorem. Let M be a compact orientable surface, and let f : M → M be a
homeomorphism. Then f is isotopic to a homeomorphism F satisfying exactly one
of the following three conditions:

• F is a rotation: There is an integer n for which Fn ≡ Id.
• F is reducible: There is a closed curve in M which F leaves invariant.
• F is pseudo-Anosov.

Of these three isotopy classes, from a dynamical systems perspective, the pseudo-
Anosov maps are the most interesting. The most familiar example of a pseudo-
Anosov map is the Arnold “cat map” of the two-dimensional torus T2, which is
in fact an Anosov diffeomorphism. No other surface admits an Anosov diffeomor-
phism, but pseudo-Anosov homeomorphisms of surfaces besides T2 form an analogy
of Anosov maps to other surfaces. Like their Anosov cousins, pseudo-Anosov maps
admit a pair of transverse foliations of the state space, and the map uniformly
contracts points along the leaves of one foliation and uniformly dilates points along
the leaves of the other. In the traditional definition of a pseudo-Anosov homeomor-
phism (see Section 2), the contraction and dilation factors are constant and inverses
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of each other, similarly to a hyperbolic toral automorphism such as the cat map.
(Accordingly, these maps are often referred to as “linear pseudo-Anosov maps”,
e.g. [10].) The primary difference between Anosov and pseudo-Anosov maps is
the presence of finitely many singularities in the foliations. These are points where
three or more leaves of one of the foliations meet at a single point. These leaves
are known as “prongs” of the singularity. The constant rate of contraction and
expansion along the transverse foliations mean the map is globally smooth except
at the singularities. Pseudo-Anosov homeomorphisms have found their way into
almost every field of geometry, such as Teichmüller theory and algebraic geometry.
However, the ergodic properties of globally smooth realizations of pseudo-Anosov
maps remains a relatively undeveloped area of study.

In [9], M. Gerber and A. Katok produced a C∞ realization of pseudo-Anosov
homeomorphisms by slowing down the trajectories near the isolated singularities.
The result is a surface diffeomorphism that is uniformly hyperbolic away from a fi-
nite set of fixed-point singularities, but whose differential slows down to the identity
at these fixed points, thus admitting Lyapunov exponents of zero. These smooth
pseudo-Anosov models also admit continuous foliations whose leaves are smooth
except at the fixed singular points. Pseudo-Anosov diffeomorphisms constructed in
this way are analogues of the one-dimensional Manneville-Pomeau map of the unit
interval to compact surfaces of arbitrary genus (see [13]), in that they admit finitely
many fixed-point singularities where the differential slows down to the identity, but
the map exhibits uniform hyperbolicity away from these singularities.

To discuss the ergodic properties of these pseudo-Anosov diffeomorphisms, we
use techniques and results from thermodynamic formalism. Thermodynamic for-
malism has been used to study ergodic and geometric properties of several classes
of nonuniformly hyperbolic and nonuniformly expanding maps. One objective of
thermodynamic formalism is to determine the existence and uniqueness of probabil-
ity measures known as Sinai-Ruelle-Bowen (SRB) measures. These are invariant
measures that admit positive Lyapunov exponents almost everywhere, and have
absolutely continuous conditional measures on unstable submanifolds (see Section
4). They are also known as “physical measures”, in the sense that the set of points
x ∈M for which we have

lim
n→∞

1

n

n−1∑
k=0

ϕ
(
fn(x)

)
=

∫
ϕdµ for any ϕ ∈ C0(M)

has positive measure. More generally, one also may consider equilibrium mea-
sures for a given potential ϕ ∈ C0(M). Equilibrium measures are mathemat-
ical generalizations of Gibbs distrubtions in statistical physics, which minimize
the Helmholtz free energy of a physical system. Within thermodynamic formal-
ism, Helmholtz free energy is replaced with the topological pressure Pf (ϕ) =
sup

{
hµ(f) +

∫
ϕdµ : µ ∈Mf

}
, where hµ(f) is the metric entropy of f with re-

spect to µ, and Mf is the space of f -invariant Borel probability measures on the
manifold M . Equilibrium measures, in other words, are invariant probability mea-
sures that maximize the sum of the metric entropy of f and the space average
of ϕ with respect to µ. The most important two equilibrium measures are SRB
measures (for which the potential is the negative log of the unstable Jacobian, or
ϕ1(x) = − log det

∣∣Dfx|Eu(x)

∣∣), and measures of maximal entropy (for which the
potential is ϕ0 ≡ 0).



THERMODYNAMICS OF SMOOTH MODELS OF PSEUDO-ANOSOV HOMEOMORPHISMS 3

One of the earliest applications of thermodynamic formalism was in studying
the ergodic theory of uniformly hyperbolic and Axiom A diffeomorphisms (e.g.
[3]). Since then, the theory of thermodynamic formalism has proven useful in
other contexts. For example, the one-dimensional Manneville-Pomeau maps f :
[0, 1] → [0, 1], defined by f(x) = x(1 + axα) mod 1 for a > 0, α > 0, have been
extensively studied as classic examples of one-dimensional nonuniformly expanding
maps (see, e.g., [17], as well as [21] for some recent work on the infinite ergodic
theory of Manneville-Pomeau maps). Additionally, in [6], V. Climenhaga, Y. Pesin,
and A. Zelerowicz proved existence of equilibrium measures for a broad class of
potential functions in the partially hyperbolic setting. These equilibrium measures
include, in particular, a unique measure of maximal entropy and a unique SRB
measure. Finally, in [2], J. Buzzi, S. Crovisier, and O. Sarig showed that any
surface diffeomorphism admits at most finitely many ergodic measures of maximal
entropy, and that there is a unique such measure in the topologically transitive case.
Our results are a special instance of this setting, and develop further statistical and
ergodic properties of the measure of maximal entropy and other equilibrium states.

In this paper, we effect a thermodynamic formalism for these pseudo-Anosov dif-
feomorphisms. Specifically, given a pseudo-Anosov diffeomorphism g of a compact
surfaceM , we consider the family of geometric t-potentials ϕt(x) = −t log

∣∣Dg|Eu(x)

∣∣
parametrized by t ∈ R, where Eu(x) is the stable subspace at the point x ∈ M .
Our main result, Theorem 4.1, claims that there is a number t0 < 0 such that for
every t ∈ (t0, 1), there is a unique equilibrium measure µt for ϕt that is Bernoulli,
has exponential decay of correlations, and satisfies the Central Limit Theorem with
respect to a class of functions containing all Hölder continuous functions on M . We
also show that the pressure function t 7→ Pg(ϕt) is real analytic in the open interval
(t0, 1). Since the pseudo-Anosov diffeomorphism g is topologically conjugate to a
pseudo-Anosov homeomorphism f , their topological entropies agree, and since f
has a unique measure of maximal entropy, so does g. We denote this measure µ0,
for the potential ϕ0 ≡ 0. As a corollary to Theorem 4.1, we obtain a thorough
description of the statistical properties of µ0. Furthermore, we prove that the map
g has a unique SRB measure, and we describe its ergodic properties. We emphasize
that a phase transition occurs at t = 1: in addition to the SRB measure, there is a
family of ergodic equilibrium measures for ϕ1 composed of convex combinations of
Dirac measures at the singularities.

The techniques we employ to establish our results are similar to those used by
Y. Pesin, S. Senti, and K. Zhang in [15] to effect thermodynamic formalism of the
Katok map. The latter is an area preserving diffeomorphism of the torus with
non-zero Lyapunov exponents. Similarly to the smooth pseudo-Anosov models, the
Katok map is obtained by slowing down trajectories near the origin to produce an
indifferent fixed point (i.e. a fixed point of the map whose differential is equal to
the identity). However, there are substantial differences between the Katok map of
the torus and the Gerber-Katok smooth pseudo-Anosov models. These include:

• The Katok map acts on the torus, and thus can be lifted to R2, while
pseudo-Anosov maps do not in general admit a lift to R2. The lift of the
Katok map to R2 plays an essential role in simplifying the analysis in [15],
and some adjustments to this argument are required to carry out similar
analysis of globally smooth pseudo-Anosov diffeomorphisms.
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• The foliations of pseudo-Anosov diffeomorphisms are singular. In partic-
ular, the singularities do not admit a locally stable or unstable subspace
forming a curve, but rather forming the prongs that meet at the singular-
ity. Furthermore, one cannot use coordinate charts whose interiors contain
the singularities if the coordinates correspond to the stable and unstable
foliations. Instead, the analysis must be performed in stable and unstable
sectors whose vertices are the singularities (see Section 3).
• Whereas the slow-down function used to construct the Katok map depends

only on the radius of the slowed-down neighborhood, the choice of slow-
down function of the pseudo-Anosov homeomorphism depends on the num-
ber of prongs of the singularity. This affects the analysis of the behavior of
the trajectories near the singularities.

The development of thermodynamics of the Katok map in [15] uses the technol-
ogy of Young diffeomorphisms, which are generalizations of hyperbolic maps. The
definition of Young diffeomorphisms relies on hyperbolicity of an induced map on
a small subset of the state space with local hyperbolic product structure. This in-
duced map can be carried over to a derived dynamical system on the corresponding
Rokhlin tower. The thermodynamics of Young diffeomorphisms have been thor-
oughly investigated in [16] and in [19]. Young towers have been used to study
thermodynamic and ergodic properties of a variety of nonuniformly hyperbolic dy-
namical systems (see [5]), including almost Anosov toral diffeomorphisms (see [20]).

This paper is structured as follows. In Section 2, we define pseudo-Anosov home-
omorphisms and discuss some of their dynamical properties, including measure in-
variance and Markov partitions. In Section 3, we describe the smooth models of
pseudo-Anosov homeomorphisms and state some important dynamical and topo-
logical properties of these maps. We state our main results in Section 4. Section 5
is devoted to the study of dynamics near the singularities and include some tech-
nical calculations needed to prove our main result. Some of these calculations are
similar to the ones performed in Section 5 of [15] but require some modifications
and adjustments. Section 6 gives a brief survey of the thermodynamic properties
of Young diffeomorphisms and inducing schemes we will be using. Section 7 proves
that our smooth models of pseudo-Anosov homeomorphisms are Young diffeomor-
phisms, and finally Section 8 uses this fact to prove our main results.

2. Preliminaries

We begin with a discussion on measured foliations of a compact two-dimensional
C∞ Riemannian manifold M , where we assume M is without boundary. Our
exposition is adapted from the presentation in [1], Section 6.4. For the reader’s
convenience, we have restated their exposition here and have included additional
details and remarks on the notation concerning pseudo-Anosov maps and their
behavior.

Definition 2.1. A measured foliation with singularities is a triple (F , S, ν), where:

• S = {x1, . . . , xm} is a finite set of points in M , called singularities;

• F = F̃ ] S is a partition of M , where S is a partition of S into points and

F̃ is a smooth foliation of M \ S;
• ν is a transverse measure; in other words, ν is a measure defined on each

curve on M transverse to the leaves of F̃ ;
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and the triple satisfies the following properties:

(1) There is a finite atlas of C∞ charts φk : Uk → C for k = 1, . . . , `, ` ≥ m.

(2) For each k = 1, . . . ,m, there is a number p = p(k) ≥ 3 of elements of F̃
meeting at xk ∈ S (these elements are called prongs of xk) such that:
(a) φk(xk) = 0 and φk(Uk) = Dak := {z ∈ C : |z| ≤ ak} for some ak > 0;

(b) if C ∈ F̃ , then the components of C ∩Uk are mapped by φk to sets of
the form{

z ∈ C : Im
(
zp/2

)
= constant

}
∩ φk(Uk);

(c) the measure ν|Uk is the pullback under φk of∣∣∣Im(dzp/2)∣∣∣ =
∣∣∣Im(z(p−2)/2dz

)∣∣∣ .
(3) For each k > m, we have:

(a) φk(Uk) = (0, bk)× (0, ck) ⊂ R2 ≈ C for some bk, ck > 0;

(b) If C ∈ F̃ , then components of C ∩Uk are mapped by φk to lines of the
form

{z ∈ C : Im z = constant} ∩ φk(Uk).

(c) The measure ν|Uk is given by the pullback of |Im dz| under φk.

An archetypal singularity with p = 3 prongs is shown in Figure 1.

Remark 2.2. Henceforth, we refer to the C∞ curves that are elements of F as “leaves
(of the foliation)”; in particular, despite the technical fact that the singleton sets
of singularities {x1}, . . . , {xk} are elements of F , we do not refer to these points
when we refer to “leaves of the foliation”.

Remark 2.3. The transverse measure ν is not a measure on M itself, in the measure-
theoretic sense of the word. What ν is measuring is the “distance traveled” trans-
verse to the leaves of the foliation, similarly to how the 1-form dx measures distance
traveled transverse to the leaves {x = x0}. To make this more explicit, properties
(2) and (3) in the above definition ensure that ν is holonomy-invariant. In partic-
ular, if γ and γ′ are isotopic curves in M \ S transverse to the leaves of F , and the
initial points of γ and γ′ lie in the same leaf F0 and the terminal points lie in the
same leaf F1, then ν(γ) = ν(γ′).

Definition 2.4. A surface homeomorphism f of a manifold M is pseudo-Anosov
if there are measured foliations with singularities (Fs, S, νs) and (Fu, S, νu) (with
the same finite set of singularities S = {x1, . . . , xm}) and an atlas of C∞ charts
φk : Uk → C for k = 1, . . . , `, ` > m, satisfying the following properties:

(1) f is differentiable, except on S.
(2) For each xk ∈ S, Fs and Fu have the same number p(k) of prongs at xk.
(3) The leaves of Fs and Fu intersect transversally at nonsingular points.
(4) Both measured foliations Fs and Fu are f -invariant.
(5) There is a constant λ > 1 such that

f(Fs, νs) = (Fs, νs/λ) and f(Fu, νu) = (Fu, λνu).

(6) For each k = 1, . . . ,m, we have xk ∈ Uk, and φk : Uk → C satisfies:
(a) φk(xk) = 0 and φk(Uk) = Dak for some ak > 0;
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Figure 1. A 3-pronged singularity of a measured foliation with singularities.

(b) if C is a curve leaf in Fs, then the components of C ∩Uk are mapped
by φk to sets of the form{

z ∈ C : Re
(
zp/2

)
= constant

}
∩Dak ;

(c) if C is a curve leaf in Fu, then the components of C ∩Uk are mapped
by φk to sets of the form{

z ∈ C : Im
(
zp/2

)
= constant

}
∩Dak ;

(d) the measures νs|Uk and νu|Uk are given by the pullbacks of∣∣∣Re
(
dzp/2

)∣∣∣ =
∣∣∣Re

(
z(p−2)/2dx

)∣∣∣
and ∣∣∣Im(dzp/2)∣∣∣ =

∣∣∣Im(z(p−2)/2dx
)∣∣∣

under φk, respectively.
(7) For each k > m, we have:

(a) φk(Uk) = (0, bk)× (0, ck) ⊂ R2 ≈ C for some bk, ck > 0;
(b) If C is a curve leaf in Fs, then components of C ∩ Uk are mapped by

φk to lines of the form

{z ∈ C : Re z = constant} ∩ φk(Uk);

(c) If C is a curve leaf in Fu, then components of C ∩ Uk are mapped by
φk to lines of the form

{z ∈ C : Im z = constant} ∩ φk(Uk);

(d) the measures νs|Uk and νu|Uk are given by the pullbacks of |Re dz|
and |Im dz| under φk, respectively.

For k = 1, . . . ,m, we call the neighborhood Uk ⊂ M described in part (6) of this
definition a singular neighborhood, and for k > m, we call Uk a regular neighborhood.
(See Figure 2.)
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Figure 2. A singular neighborhood with a 3-pronged singularity.
The solid lines and broken lines respectively represent the stable
and unstable foliations Fs and Fu, for example.

Remark 2.5. The notation f(Fu, νu) = (Fu, λνu) means two things. First, it
means that if γ is a subset of a leaf of Fu, then so is f(γ), and in particular,
so is f−1(γ). Second, it means if γ is an open interval in Fs, or more generally
any arc in M transverse to the foliation Fu, then νu

(
f−1(γ)

)
= λνu(γ). That

is, f∗ν
u = λνu, with f∗ν

u the pushforward transverse measure. Likewise for the
notation f(Fs, νs) = (Fs, νs/λ). So points on the same Fs-leaf contract in the νu-
measure by a factor of λ, and points on the same Fu-leaf dilate in the νs-measure
by a factor of λ.

Remark 2.6. Since f is a homeomorphism, f permutes the singularities; that is, the
singular set S is f -invariant. However, our arguments assume the singularities are
fixed under the pseudo-Anosov homeomorphism. If the singularities are not fixed
points, one could consider an appropriate iterate of f and study the dynamics of
this iterate, arriving at the same results.

We state a few important properties of pseudo-Anosov homeomorphisms we will
use over the course of our arguments.

Proposition 2.7. Let f : M → M be a pseudo-Anosov homeomorphism. For
x ∈ M \ S, TxM = TxFs(x) ⊕ TxFu(x), and in these coordinates, Dfx(ξs, ξu) =
(ξs/λ, λξu), where ξs and ξu are nonzero vectors in TxFs(x) and TxFu(x), Fs(x)
and Fu(x) represent the curve containing x in the respective foliation, and λ is the
dilation factor for f .

Proof. This follows immediately from the definition of pseudo-Anosov diffeomor-
phisms after a calculation in coordinates (see Remark 2.5). �

Proposition 2.8 (see [7], Exposé 10). A pseudo-Anosov surface homeomorphism
f : M → M preserves a smooth invariant probability measure ν defined locally as
the product of νs on Fu-leaves with νu on Fs-leaves. In any coordinate chart of
M , this probability measure ν has a density with respect to the measure induced by
the Lebesgue measure on R2, and this density vanishes at singularities.
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Proposition 2.9 (see [7], Exposé 10). Every pseudo-Anosov homeomorphism of a
surface M admits a finite Markov partition of arbitrarily small diameter. Conju-
gated to the symbolic system induced by this Markov partition, with the measure ν
as in the preceding proposition, (M,f, ν) is Bernoulli.

3. Pseudo-Anosov diffeomorphisms

Generally speaking, pseudo-Anosov homeomorphisms as defined in Definition
2.4 are differentiable everywhere except at the singularities xk with p(k) ≥ 3. This
is a consequence of the fact that f contracts (resp. expands) points in the stable
(resp. unstable) leaves of the foliation, so the differential of f cannot possibly be
linear at the singularities.

In this section, we construct a surface diffeomorphism g : M →M that is topo-
logically conjugate to the pseudo-Anosov homeomorphism f , and whose differential
at the singularity is the identity. (Since we assume the singularities are fixed, this
is a reasonable statement.)

Before proceeding with the construction, we point out that some literature refers
to the maps defined in Definition 2.4 as “pseudo-Anosov diffeomorphisms”, despite
the fact that these maps are not differentiable at the singularities. To avoid any
confusion, we reserve the word “diffeomorphism” only for those maps that are
differentiable on all of M , and use the phrase “pseudo-Anosov homeomorphism”
for the maps described in Definition 2.4.

Let xk ∈ S, let p = p(xk), and let φk : Uk → C be the chart described in part
(6) of Definition (2.4). The stable and unstable prongs at xk are the leaves P skj
and Pukj , j = 0, . . . , p− 1 of Fs and Fu, respectively, whose endpoints meet at xk.
Locally, they are given by:

P skj = φ−1
k

{
ρeiτ : 0 ≤ ρ < ak, τ =

2j + 1

p
π

}
,

and Pukj = φ−1
k

{
ρeiτ : 0 ≤ ρ < ak, τ =

2j

p
π

}
.

For simplicity, assume f(P skj) ⊆ P skj for all j = 1, . . . , p. Furthermore, we define
the stable and unstable sectors at xk to be the regions in Uk bounded by the stable
(resp. unstable) prongs:

Sskj = φ−1
k

{
ρeiτ : 0 ≤ ρ < ak,

2j − 1

p
π ≤ τ ≤ 2j + 1

p
π

}
,

and Sukj = φ−1
k

{
ρeiτ : 0 ≤ ρ < ak,

2j

p
π ≤ τ ≤ 2j + 2

p
π

}
.

The strategy for creating our diffeomorphism g is adapted from section 6.4.2 of
[1]. In each stable sector, we apply a “slow-down” of the trajectories, followed
by a change of coordinates ensuring the resulting diffeomorphism g preserves the
measure induced by a convenient Riemannian metric.

Let F : C→ C be the map s1 + is2 7→ λs1 + is2/λ. Note F is the time-1 map of
the vector field V given by

ṡ1 = (log λ)s1, ṡ2 = −(log λ)s2.
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Let 0 < r1 < r0 < min{a1, . . . , a`}, and define r̃0 and r̃1 by r̃j = (2/p)r
p/2
j for

j = 0, 1 and for each p = p(k). Define a “slow-down” function Ψp for the p-pronged
singularity on the interval [0,∞) so that:

(1) Ψp(u) = (p/2)(2p−4)/pu(p−2)/p for u ≤ r̃2
1;

(2) Ψp is C∞ except at 0;

(3) Ψ̇p(u) ≥ 0 for u > 0;
(4) Ψp(u) = 1 for u ≥ r̃2

0.

Consider the vector field VΨp on Dr̃0 ⊂ C defined by

(3.1) ṡ1 = (log λ)s1Ψp

(
s2

1 + s2
2

)
and ṡ2 = −(log λ)s2Ψp

(
s2

1 + s2
2

)
.

Let Gp be the time-1 map of the vector field VΨp
. Assume r1 is chosen to be small

enough so that Gp = F on a neighborhood of the boundary of Dr̃0 , and assume r0

is chosen to be small enough so that the open neighborhood U0 :=
⋃m
k=1 φ

−1
k (Dr0)

of S is disjoint from the open set
⋃`
k=m+1 φ

−1
k (Dak). We also define the open

neighborhood Ũ0 :=
⋃m
k=1 φ

−1
k (Dr̃0) ⊂ U0, as well as U1 and Ũ1 defined analogously

with Dr1 and Dr̃1 respectively.

Let ãk = (2/p)a
p/2
k , and define the coordinate change Φkj : φkS

s
kj → {z : Rez ≥ 0}∩

Dãk by

Φkj(z) = (2/p)zp/2 = w = s1 + is2.

Define g : M → M by g(x) = f(x) for x 6∈ U0 and meanwhile for 1 ≤ k ≤ m,
1 ≤ j ≤ p(k), define g on each sector Sskj ∩ φ

−1
k (Dr0) by

g(x) = φ−1
k Φ−1

kj GpΦkjφk(x).

Proposition 3.1 (see [1]). The map g defined above is well-defined on the unstable
prongs and singularity. It is in fact a diffeomorphism topologically conjugate to f ,
and for any ε > 0, r0 and r1 can be chosen so that ‖f − g‖C0 < ε. In particular, g
admits a Markov partition of arbitrarily small diameter.

Next we define a Riemannian metric ζ = 〈·, ·〉 on M \S with respect to which the
map g is invariant. In the stable sector Sskj∩φ

−1
k (Dãk), we consider the coordinates

w = s1 + is2 given by Φkj ◦φk defined above. Outside of this neighborhood, we use
the coordinates z = s1 + is2. In both sets of coordinates, the stable and unstable
transversal measures are νs = |ds1| and νu = |ds2|. On stable sectors in M \ S,
we define the Riemannian metric ζ to be the pullback of

(
ds2

1 + ds2
2

)
/Ψp

(
s2

1 + s2
2

)
under Φkj ◦ φk. In regular neighborhoods (Uk, φk), we define ζ = φ∗k

(
ds2

1 + ds2
2

)
.

Since r̃0 is chosen so that φ−1
k (Dr̃0) is disjoint from regular neighborhoods, and

Ψp(u) ≡ 1 for u ≥ r̃2
0, ζ is consistently defined on chart overlaps. One can further

show that ζ agrees with the Euclidean metric in φ−1
k (Dr̃0). So ζ can be extended

to a Riemannian metric on all of M .

Proposition 3.2 (see [1]). Letting z = t1 +it2 be the coordinates given by (φk, Uk),
1 ≤ k ≤ m, the Riemannian metric ζ is actually the Euclidean metric dt21 +dt22. In
particular, the diffeomorphism g : M → M is µ1-area preserving, where µ1 is the
volume determined by ζ.

For stable sectors Sskj , we use the coordinates w = Φskj(z) = s1 + is2, and in
regular neighborhoods Uk, k ≥ m, we use the coordinates z = s1 + is2. Then
s1 represents the coordinate in the unstable foliation, and s2 is the coordinate in
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the stable foliation. Define the coordinates (ξ1, ξ2) in each tangent space TxM ,
x ∈M \ S, to be the coordinates with respect to

(3.2) (Φkj ◦ φk)
−1
∗

(
Ψp

(
s2

1 + s2
2

) ∂

∂si

)
, i = 1, 2

in each stable sector, and with respect to (φk)
−1
∗ (∂/∂si), i = 1, 2, in each regular

neighborhood. For x ∈ M \ S, let C+
x be the cone in TxM bounded by the lines

ξ1 = ±ξ2, respectively, and contains the tangent line to the Fu leaf through x.
Respectively define C−x to be the cone containing the Fs leaf.

Proposition 3.3 (see [1]). For x ∈M \S, the cones C+
x , C

−
x satisfy the following:

(1) C+
x and C−x depend continuously on x ∈M \ S;

(2) C+
x (resp. C−x ) is strictly invariant under Dg (resp. Dg−1) on x ∈M \ S;

(3) For each x ∈M \ S, the intersections

Eu(x) :=

∞⋂
n=0

DgnC+
g−n(x) and Es(x) :=

∞⋂
n=0

Dg−nC−gn(x)

are one-dimensional subspaces of TxM ; moreover, if x ∈ M \ S is on an
unstable leaf, then Eu(x) is tangent to the unstable leaf (and similarly for
Es(x) on a stable leaf).

(4) Eu(x) and Es(x) depend continuously on x ∈M \ S.

We will need a stronger condition on cone invariance. For x ∈ M \ S and for
0 < α < 1, define the families of cones K+(x) and K−(x) by:

K+(x) = {v = (ξ1, ξ2) ∈ TxM : |ξ2| < α|ξ1|} ,
K−(x) = {v = (ξ1, ξ2) ∈ TxM : |ξ1| < α|ξ2|} .

In the original construction of pseudo-Anosov diffeomorphisms yielding Proposition
3.3, we have α = 1. But for certain later arguments, we will require α < 1.

Lemma 3.4. There exists a 0 < α0 < 1 such that for all α0 < α < 1, and for all
x ∈M ,

DgxK
+(x) ⊆ K+(g(x)) and Dg−1

g(x)K
−(g(x)) ⊆ K−(x).

Proof. We prove invariance only for K+(x); the invariance of the stable cones is

proven similarly by considering g−1. Assume x ∈ Ũ0, as the result is clearly true

outside of Ũ0. Consider the vector field (3.1) defined on C. The variational equations
for (3.1) give us

dζ1
dt

= log λ
((

Ψp (u) + 2s2
1Ψ̇p (u)

)
ξ1 + 2s1s2Ψ̇p (u) ξ2

)
and

dζ2
dt

= − log λ
(

2s1s2Ψ̇p (u) ξ1 +
(

Ψp (u) + 2s2
2Ψ̇p (u)

)
ξ2

)
.

where u := s2
1 + s2

2. The “slope” η := ξ2/ξ1 of a tangent vector in C changes under
the flow of (3.1) as:

(3.3)
dη

dt
= −2 log λ

((
1 + η2

)
s1s2Ψ̇p(u) +

(
Ψp(u) +

(
s2

1 + s2
2

)
Ψ̇p

)
η
)
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Suppose r̃2
1 ≤ u ≤ r̃2

0. Since Ψp > 0, and Ψ̇p > 0 is decreasing, we have:

Ψp(u)

Ψ̇p(u)
≥ Ψp(r̃

2
1)

Ψ̇p(r̃2
1)

=
p

p− 2
r̃2
1 ≥

p

p− 2

(
r̃1

r̃0

)2

u.

Meanwhile, if 0 < u < r̃2
1, we have

Ψp(u)

Ψ̇p(u)
=

p

p− 2
u ≥ p

p− 2

(
r̃1

r̃0

)2

u.

If η > 0, this gives us

dη

dt
≤ −2 log λΨ̇p(u)

((
1 + η2

)
s1s2 +

(
1 +

p

p− 2

(
r̃1

r̃2

)2
)(

s2
1 + s2

2

)
η

)

= −2 log λΨ̇p(u)

(((
1 +

p

p− 2

(
r̃1

r̃0

)2
)
η − 1

2

(
1 + η2

)) (
s2

1 + s2
2

)
+

1

2

(
1 + η2

)
(s1 + s2)

2

)
≤ −2 log λΨ̇p(u)ψ(η)

(
s2

1 + s2
2

)
,

where ψ(η) := p
p−2

(
r̃1
r̃2

)2

− 1
2 (η − 1)2. Since ψ(1) > 0, there is a α0 ∈ (0, 1) with

ψ(η) > 0 for α0 < η < 1. Therefore dη
dt < 0 for α0 < η < 1. For η < 0, we have

dη

dt
= 2 log λ

((
Ψp(u) +

(
s2

1 + s2
2

)
Ψ̇p(u)

)
|η| − s1s2

(
1 + η2

)
Ψ̇p(u

)
≥ 2 log λΨ̇p(u)

((
1 +

p

p− 2

(
r̃1

r̃0

)2
)(

s2
1 + s2

2

)
|η| − s1s2

(
1 + η2

))
.

A similar argument will show dη
dt > 0 for −1 < η < −α0. Letting α = η, for z ∈ C,

we have D(Gp)zK
+
0 (z) ⊆ K+

0 (Gp(z)) and D(Gp)
−1
Gp(z)K

−
0 (Gp(z)) ⊆ K−0 (z), where

K+
0 (z) = {(ζ1, ζ2) ∈ TzC : |ζ2| < α|ζ1|} ,

K−0 (z) = {(ζ1, ζ2) ∈ TzC : |ζ1| < α|ζ2|} .
Note α0 does not depend on the distance of z ∈ C from 0. Applying the coordinate
map φ−1

k ◦Φ−1
kj : {z : Re(z) ≥ 0} ∩Dãk →M , the cones K+(x) and K−(x) defined

using the coordinates in (3.2) for TxM satisfy the same invariance property as K+
0

and K−0 . This proves the lemma. �

4. Main results

We begin by defining the relevant ergodic properties under consideration. Given
a continuous potential function ϕ : M → R, a probability measure µϕ on M is an
equilibrium measure for ϕ if

Pg(ϕ) = hµϕ(g) +

∫
M

ϕdµϕ,

where hµϕ
(g) is the metric entropy of g with respect to µϕ, and Pg(ϕ) is the

topological pressure of ϕ; that is, Pg(ϕ) is the supremum of hµ(g) +
∫
M
ϕdµ over

all g-invariant probability measures µ on M .
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A special instance of equilibrium measures are known as SRB measures. Given
a (uniformly, nonuniformly, or partially) hyperbolic function f : M → M on a
Riemannian manifold M , an f -invariant Borel probability measure µ on M is called
an SRB measure if f admits positive Lyapunov exponents µ-almost everywhere,
and if the conditional measures of µ on the unstable submanifolds are absolutely
continuous with respect to the Riemannian leaf volume.

Additionally, we say that g has exponential decay of correlations with respect to
a measure µ ∈ M(g,M) and a class of functions H on M if there exists κ ∈ (0, 1)
such that for any h1, h2 ∈ H,∣∣∣∣∫ h1 (gn(x))h2(x) dµ(x)−

∫
h1(x) dµ(x)

∫
h2(x) dµ(x)

∣∣∣∣ ≤ Cκn
for some C = C(h1, h2) > 0. Furthermore, g is said to satisfy the Central Limit
Theorem (CLT) for a class H of functions if for any h ∈ H that is not a coboundary
(ie. h 6= h′ ◦ g − h′ for any h′ ∈ H), there exists σ > 0 such that

lim
n→∞

µ

{
1√
n

n−1∑
i=0

(
h(gi(x))−

∫
h dµ

)
< t

}
=

1

σ
√

2π

∫ t

−∞
e−τ

2/2σ2

dτ.

The family of potential functions we consider are the geometric t-potentials defined

by ϕt(x) = −t log
∣∣∣Dgx∣∣Eu(x)

∣∣∣. Although the unstable distribution Eu does not

continuously extend to the singularities, the differential Dgx0
is the identity at

each singularity x0, so ϕt continuously extends to the singularities; in particular,
ϕt(x0) = 0 for each singularity x0. So the geometric t-potential is well-defined in
this setting.

Our result shows there is a t0 < 0 for which every t ∈ (t0, 1) admits a unique
equilibrium state µϕt

=: µt for the potential ϕt : M → R. When t = 0, ϕ0 ≡ 0,
so the equilibrium measure µ0 satisfies Pg(0) = hµ0

(g), and so µ0 is the unique
measure of maximal entropy for g.

We now state our main result.

Theorem 4.1. Consider a pseudo-Anosov diffeomoprhism g : M →M on a com-
pact Riemannian manifold M . The following statements hold:

(1) Given any t0 < 0, we may take r0 > 0 in the construction of g so that for
any t ∈ (t0, 1), there is a unique equilibrium measure µt associated to ϕt.
This equilibrium measure has exponential decay of correlations and satisfies
the Central Limit Theorem with respect to a class of functions containing
all Hölder continuous functions on M , and is Bernoulli. Additionally, the
pressure function t 7→ Pg(ϕt) is real analytic in the open interval (t0, 1).

(2) For t = 1, there are two classes of equilibrium measures associated to ϕ1:
convex combinations of Dirac measures concentrated at the singularities,
and a unique invariant SRB measure µ.

(3) For t > 1, the equilibrium measures associated to ϕt are precisely the convex
combinations of Dirac measures concentrated at the singularities.

Remark 4.2. Uniqueness of the measure µt for t ∈ (t0, 1) implies this measure is
ergodic, but in fact, Theorem 4.1 gives us that this measure is Bernoulli.

Remark 4.3. Taking t = 0, this theorem shows that the dynamical system (M, g)
admits a unique measure of maximal entropy that is Bernoulli, has exponential
decay of correlations, and satisfies the Central Limit Theorem.
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Remark 4.4. Although we know t 7→ Pg(ϕt) is real analytic in (t0, 1), we do not
know about the behavior of Pg(ϕt) for t ≤ t0. In particular, it is not known whether
(M, g, ϕt) admits a phase transition at t = t0.1

5. Dynamics Near Singularities

In this section, we discuss the dynamical properties of pseudo-Anosov diffeo-
morphisms, considering both their global behavior as well as their behavior near
singularities. The thermodynamic constructions we will develop in Sections 6 and 7
require bounds on how quickly nearby orbits diverge from each other. For this rea-
son, the estimates and inequalities collected in this section will become important
tools to examine how nearby orbits behave in neighborhoods of the singularities.

Several of the technical calculations made here are similar to the calculations
performed for the Katok map in [15]. However, they are carried out here for the
reader’s convenience, as well as the fact that the slowdown function in the Katok
map uses different constants depending on the radius of the slowed-down neigh-
borhood (by contrast, our slowdown function depends not on the radius of the
slowdown, but on the number of prongs of the singularity).

Our first two technical estimates concern how long an orbit remains in a neigh-

borhood of a singularity. Recall our definitions r̃j = (2/p)r
p/2
j for j = 0, 1. In

particular, r̃0 and r̃1 depend on p, and thus depend on k for k = 1, . . . ,m.

Lemma 5.1. There exists a Tp > 0, depending on p, λ, r0, and r1, so that for any
solution s(t) of (3.1) with s(0) ∈ Dr̃0 ,

max {t > 0 : s(t) ∈ Dr̃0 \Dr̃1} < Tp.

Proof. The value s1s2 is invariant under the flow. If s1s2 ≥ 1
2 r̃

2
1, then when s1 = s2,

the minimum value of s2
1 + s2

2 is ≥ r̃2
1, and the trajectory never enters Dr̃1 . If

s1s2 <
1
2 r̃

2
1, the trajectory either will enter Dr̃1 or has already entered Dr̃1 and is

on its way out of Dr̃0 .
Case 1: s1s2 ≥ 1

2 r̃
2
1. Since r̃2

0 ≥ s2
1 + s2

2 ≥ s2
2, we have 1

4 r̃
4
1 ≤ s2

1s
2
2 ≤ s2

1r̃
2
0, so

s2
1 ≥ r̃4

1/4r̃
2
0. So, since Ψp is an increasing function,

d

dt

(
s2

1

)
= 2s2

1Ψp

(
s2

1 + s2
2

)
log λ ≥ r̃4

1

2r̃2
0

Ψp

(
r̃2
1

)
log λ.

It follows that the time T it takes for s2
1 to reach r̃2

0 from s2
1(0) ≥ r̃4

1/4r̃
2
0 satisfies

T ≤
r̃2
0 −

r̃41
4r̃20

r̃41
2r̃20

Ψp (r̃2
1) log λ

=
4r2p

0 − r
2p
1

2r3p−2
1 log λ

.

Case 2: s1s2 <
1
2 r̃

2
1. Assume that s1 < s2, ensuring that the trajectory will

enter Dr̃1 . If we can prove there is a uniform time bound T before which this
happens, then by symmetry of the vector field, the same T is an upper bound for
the time it takes this trajectory to exit Dr̃0 when s1 > s2.

We will in fact establish a bound on how long it takes s2
2 to decrease from s2

2(0)
to 1

2 r̃
2
1 when s1 < s2. For then, because s1s2 <

1
2 r̃

2
1, by the time s2

2 = 1
2 r̃

2
1, the

1For the Katok map, it is shown in the preprint “Unique Equilibrium States, Large Deviations

and Lyapunov Spectra for the Katok Map’ by T. Wang (see https://arxiv.org/abs/1903.02677v2)
that for sufficiently small values of the parameters α > 0 and r > 0, the Katok map has a unique

equilibrium measure µt corresponding to the geometric potential ϕt for all values of t < 1.

https://arxiv.org/abs/1903.02677v2
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trajectory will already have entered Dr̃1 . So, s2
2 ≥ 1

2 r̃
2
1, and since in this case

s2
1 + s2

2 ≥ 1
2 r̃

2
1, we have

d

dt

(
s2

2

)
= −2s2

2Ψp

(
s2

1 + s2
2

)
log λ ≤ −r̃2

1Ψp

(
1
2 r̃

2
1

)
log λ.

It follows that the time T it takes for s2
2 to reach 1

2 r̃
2
1 from s2

2(0) ≤ r̃2
0 satisfies

T ≤
r̃2
0 − 1

2 r̃
2
1

r̃2
1Ψp

(
1
2 r̃

2
1

)
log λ

= 2(p−2)/2 2rp0 − r
p
1

2r2p−2
1 log λ

.

�

Lemma 5.2. There exists a T ∈ Z, depending on r0 and λ, so that for any x ∈
Ũ0 :=

⋃m
k=1 φ

−1
k (Dr̃0) ⊂M , we have

max

{
N > 0 : gn(x) ∈

m⋃
k=1

φ−1
k (Dr̃0 \Dr̃1) for all n = 0, . . . N

}
≤ T.

Proof. This follows from Lemma 5.1 after taking T = max{Tp(k) : k = 1, . . . ,m}.
�

Next, we will establish bounds on how quickly nearby points will diverge while
remaining near the singularities. The main lemma that demonstrates this bound is
Lemma 5.5.

Lemma 5.3. For i, j = 1, 2 define the functions dij : Dr̃1 → R by

dij(s1, s2) =
∂2

∂si∂sj

(
s2Ψp

(
s2

1 + s2
2

))
.

Then,

max
i,j=1,2

|dij(s1, s2)| ≤ 6p− 12

p

(p
2

)(2p−4)/p (
s2

1 + s2
2

)(p−4)/2p
.

Proof. Recall that for u ≤ r̃2
1, we have Ψp(u) = (p/2)(2p−4)/pu(p−2)/p. So,

∂

∂s1

(
s2Ψp

(
s2

1 + s2
2

))
=

2p− 4

p

(p
2

)(2p−4)/p

s1s2

(
s2

1 + s2
2

)−2/p
, and

∂

∂s2

(
s2Ψp

(
s2

1 + s2
2

))
=

2p− 4

p

(p
2

)(2p−4)/p

s2
2

(
s2

1 + s2
2

)−2/p

+
(p

2

)(2p−4)/p (
s2

1 + s2
2

)(p−2)/p
.

Note |s1|2 ≤
√
s2

1 + s2
2, and since p ≥ 3,

−2 ≤ − 4s2
1

p (s2
1 + s2

2)
≤ 0.
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Therefore, for all (s1, s2) ∈ Dr̃1 ,

|d11 (s1, s2)| = 2p− 4

p

(p
2

)(2p−4)/p
∣∣∣∣ ∂∂s1

s1s2

(
s2

1 + s2
2

)−2/p
∣∣∣∣

=
2p− 4

p

(p
2

)(2p−4)/p
∣∣∣∣s2

(
s2

1 + s2
2

)−2/p − 4

p
s2

1s2

(
s2

1 + s2
2

)−(p+2)/p
∣∣∣∣

=
2p− 4

p

(p
2

)(2p−4)/p

|s2|
(
s2

1 + s2
2

)−2/p
∣∣∣∣1− 4s2

1

p (s2
1 + s2

2)

∣∣∣∣
≤ 2p− 4

p

(p
2

)(2p−4)/p (
s2

1 + s2
2

)(p−4)/2p
.

A similar argument applies for d12 = d21 and for d22, though in d22 we use the
estimate −2 ≤ 4s2

1/3p
(
s2

1 + s2
2

)
instead:

|d12 (s1, s2)| = 2p− 4

p

(p
2

)(2p−4)/p

|s1|
(
s2

1 + s2
2

)−2/p
∣∣∣∣1− 4s2

2

p (s2
1 + s2

2)

∣∣∣∣
≤ 2p− 4

p

(p
2

)(2p−4)/p (
s2

1 + s2
2

)(p−4)/2p
,

|d22 (s1, s2)| = 6p− 12

p

(p
2

)(2p−4)/p

|s2|
(
s2

1 + s2
2

)−2/p
∣∣∣∣1− 4s2

2

3p (s2
1 + s2

2)

∣∣∣∣
≤ 6p− 12

p

(p
2

)(2p−4)/p (
s2

1 + s2
2

)(p−4)/2p
.

�

Let s(t) =
(
s1(t), s2(t)

)
be a solution to (3.1), and assume s(t) is defined in

the unique interval [0, T ] for which G−1
p (s(0)), Gp(s(T )) 6∈ Dr̃1 and s(t) ∈ Dr̃1 for

0 ≤ t ≤ T . In particular, this means s(0), s(T ) ∈ ∂Dr̃1 . (Recall Gp is the time-1
map of the vector field (3.1).) Further denote T1 = T/2, so that if s1(t) > 0 and
s2(t) > 0 for t ∈ [0, T ], we have s1(t) ≤ s2(t) for t ∈ [0, T1] and s1(t) ≥ s1(t) for
t ∈ [T1, T ].

Lemma 5.4. Given a solution s(t) to (3.1), and T and T1 defined above, we have
the following inequalities:

(a) |s1(t)| ≤ |s1(b)|
(
1 + C0s1(b)(2p−4)/p(b− t)

)−p/(2p−4)
, 0 ≤ t ≤ b ≤ T ;

(b) |s2(t)| ≤ |s2(a)|
(
1 + C0s2(a)(2p−4)/p(t− a)

)−p/(2p−4)
, 0 ≤ a ≤ t ≤ T ;

(c) |s2(t)| ≥ |s2(a)|
(
1 + 2(p−2)/pC0s2(a)(2p−4)/p(t− a)

)−p/(2p−4)
,

0 ≤ a ≤ t ≤ T1;

(d) |s1(t)| ≥ |s1(b)|
(
1 + 2(p−2)/pC0s1(b)(2p−4)/p(b− t)

)−p/(2p−4)
,

T1 ≤ t ≤ b ≤ T ;

where C0 = 2p−4
p

(
p
2

)(2p−4)/p
log λ.

Proof. By symmetry, we may assume s1(t) > 0 and s2(t) > 0 for t ∈ [0, T ]. Then
using the facts that s2

1 +s2
2 ≥ s2

i for i = 1, 2, and that Ψp(u) = (p/2)(2p−4)/pu(p−2)/p
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for 0 ≤ u ≤ r̃2
1, (3.1) implies

d

dt
s1(t) ≥

(p
2

)(2p−4)/p

s1(t)(3p−4)/p log λ, and

d

dt
s2(t) ≤ −

(p
2

)(2p−4)/p

s2(t)(3p−4)/p log λ.

In particular, this gives us

s1(t)−(3p−4)/p d

dt
s1(t) ≥

(p
2

)(2p−4)/p

log λ, and

s2(t)−(3p−4)/p d

dt
s2(t) ≤ −

(p
2

)(2p−4)/p

log λ.

Integrating these expressions between a and b, where 0 ≤ a ≤ b ≤ T , we get:

s2(b)−(2p−4)/p − s2(a)−(2p−4)/p ≥ C0(b− a), and

s1(b)−(2p−4)/p − s1(a)−(2p−4)/p ≤ −C0(b− a),

where C0 = 2p−4
p

(
p
2

)(2p−4)/p
log λ. From assuming that si(t) > 0, i = 1, 2, we get

inequalities (a) and (b).
Using the fact that s1(t) ≤ s2(t) for 0 ≤ t ≤ T1 = 1

2T and s1(t) ≥ s2(t) for
T1 ≤ t ≤ T , we get:

s1(t)2 + s2(t)2 ≤ 2s2(t)2, 0 ≤ t ≤ T1;

s1(t)2 + s2(t)2 ≤ 2s1(t)2, T1 ≤ t ≤ T.

Once again, applying (3.1) yields

d

dt
s1(t) ≤ 2(p−2)/p

(p
2

)(2p−4)/p

s1(t)(3p−4)/p log λ, T1 ≤ t ≤ T,

d

dt
s2(t) ≥ −2(p−2)/p

(p
2

)(2p−4)/p

s2(t)(3p−4)/p log λ, 0 ≤ T1 ≤ T.

Using the same integration strategy from a to b as before gives us

s1(b)−(2p−4)/p − s1(t)−(2p−4)/p ≥ −2(p−2)/pC0(b− t), T1 ≤ t ≤ b ≤ T ;

s2(t)−(2p−4)/p − s2(a)−(2p−4)/p ≤ 2(p−2)/pC0(t− a), 0 ≤ a ≤ t ≤ T1.

This gives us inequalities (c) and (d). �

Now suppose s̃(t) =
(
s̃1(t), s̃2(t)

)
is another solution of (3.1) defined for t ∈

[0, T ]. We will need an upper and lower bound for ∆s(t) := s̃(t) − s(t). Let
∆sj(t) = s̃j(t)− sj(t), j = 1, 2.

Lemma 5.5. Suppose s1(t) 6= 0 6= s2(t) for t ∈ [0, T ] and that ∆s2(t) > 0 for
t ∈ [0, T ]. Suppose further that 0 < α < 1 satisfies

(1) |∆s1(t)| ≤ α∆s2(t) for t ∈ [0, T ];

(2)
∣∣∣∆s2(0)
s2(0)

∣∣∣ ≤ 1−α
72 .
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Then,

∆s2(t) ≤ ∆s2(0)

s2(0)
s2(t)

(
1 + 2(p−2)/pC0s2(0)(2p−4)/pt

)−β
, 0 ≤ t ≤ T1,

∆s2(t) ≤ ∆s2(T1)

s1(T1)
s1(t)

(
1 + 2(p−2)/pC0s1(b)(2p−4)/p(b− t)

1 + 2(p−2)/pC0s1(b)(2p−4)/p(b− T1)

)β
,

T1 ≤ t ≤ b ≤ T,

where β = 2−(3p−2)/p(1−α), and C0 is the constant from Lemma 5.4. Furthermore,
for 0 ≤ a ≤ T1 ≤ b ≤ T ,

(5.1) ‖∆s(b)‖ ≤
√

1 + α2
s1(b)

s2(a)
‖∆s(a)‖ .

Proof. Assume sj(t) > 0 for j = 1, 2; the other cases follow by symmetry. Further
denote u = s2

1 +s2
2 and ũ = s̃2

1 + s̃2
2. Applying equation (3.1) to the second Lagrange

remainder of the function (s1, s2) 7→ s2Ψp

(
s2

1 + s2
2

)
centered at the point (s1, s2),

we get:

d

dt
∆s2 = − log λ (s̃2Ψp(ũ)− s2Ψp(u))

= − log λ

(
∂

∂s1

(
s2Ψp(u)

)
∆s1 +

∂

∂s2

(
s2Ψp(u)

)
∆s2

+
1

2

∑
j,k=1,2

djk (ξ1, ξ2) ∆sj∆sk

)

= − log λ

(
2s1s2Ψ̇p(u)∆s1 +

(
Ψp(u) + 2s2

2Ψ̇p(u)
)

∆s2

+
1

2

∑
j,k=1,2

djk (ξ1, ξ2) ∆sj∆sk

)
,

where djk are as in Lemma (5.3) and ξ = (ξ1, ξ2) ∈ Dr̃1 is such that ξj lies between
sj and s̃j for j = 1, 2. It follows that

d

dt

(
∆s2

s2

)
=

1

s2

d

dt
∆s2 −

1

s2
2

ṡ2∆s2

= − log λ

(
2s1Ψ̇p(u)∆s1 +

1

s2
Ψp(u)∆s2 + 2s2Ψ̇p(u)∆s2

)
− log λ

2

∑
j,k=1,2

djk (ξ1, ξ2)
∆sj∆sk
s2

+ log λ
1

s2
Ψp(u)∆s2

= − (2p− 4) log λ

p

(p
2

)(2p−4)/p

u−2/p (s1∆s1 + s2∆s2)

− log λ

2

∑
j,k=1,2

djk (ξ1, ξ2)
∆sj∆sk
s2

.

Suppose 0 ≤ t ≤ T1, so that 0 < s1(t) ≤ s2(t). Since |∆s1(t)| ≤ α∆s2(t) by
assumption, we get:

s1∆s1 + s2∆s2 ≥ (−s1α+ s2) ∆s2 ≥ (1− α)s2∆s2.
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Lemma 5.3 implies

(5.2)
∑
j,k

djk (ξ1, ξ2) ∆sj∆sk ≥ −
24p− 48

p

(p
2

)(2p−4)/p (
ξ2
1 + ξ2

2

)(p−4)/2p
(∆s2)

2
.

It follows from the above two inequalities that

d

dt

(
∆s2

s2

)
≤ −(1− α)

(2p− 4) log λ

p

(p
2

)(2p−4)/p (
s2

1 + s2
2

)−2/p
s2∆s2

+
(12p− 24) log λ

p

(p
2

)(2p−4)/p (
ξ2
1 + ξ2

2

)(p−4)/2p (∆s2)
2

s2
.

Since s1(t) ≤ s2(t) for 0 ≤ t ≤ T1, we have s2
2 ≤ s2

1 + s2
2 ≤ 2s2

2. Therefore,

d

dt

(
∆s2

s2

)
≤ −(1− α)

(2p− 4) log λ

p

(p
2

)(2p−4)/p (
s2

1 + s2
2

)(p−2)/p s2
2

s2
1 + s2

2

∆s2

s2

+
(12p− 24) log λ

p

(p
2

)(2p−4)/p

s
(2p−4)/p
2

(
ξ2
1 + ξ2

2

s2
2

)(p−4)/2p(
∆s2

s2

)2

≤ −(1− α)
(p− 2) log λ

p

(ps2

2

)(2p−4)/p ∆s2

s2

+
(12p− 24) log λ

p

(ps2

2

)(2p−4)/p
(
ξ2
1 + ξ2

2

s2
2

)(p−4)/2p(
∆s2

s2

)2

.

Denoting κ = κ(t) = ∆s2
s2

(t), we summarize:

dκ

dt
≤ −(1− α)

(p− 2) log λ

p

(ps2

2

)(2p−4)/p

κ

+
(12p− 24) log λ

p

(ps2

2

)(2p−4)/p
(
ξ2
1 + ξ2

2

s2
2

)(p−4)/2p

κ2

= − (p− 2) log λ

p

(ps2

2

)(2p−4)/p

κ

(
1− α− 12

(
ξ2
1 + ξ2

2

s2
2

)(p−4)/2p

κ

)
(5.3)

Note 0 < s2 ≤ ξ2 ≤ s̃2 = s2 + ∆s2, and ξ1 ≤ s1 + |∆s1| ≤ s2 + α∆s2. Therefore,
(5.4)

1 ≤ ξ2
2

s2
2

≤ ξ2
1 + ξ2

2

s2
2

≤ (s2 + α∆s2)
2

+ (s2 + ∆s2)
2

s2
2

= (1+ακ)2+(1+κ)2 < 2(1+κ)2.

It follows that(
ξ2
1 + ξ2

2

s2
2

)(p−4)/2p

≤

{
1 if p = 3, 4;(
2(1 + κ)2

)(p−4)/2p
if p ≥ 5.

Using Assumption (2), we observe that

1− α− 12

(
ξ2
1 + ξ2

2

s2
2

)(p−4)/2p

κ(0) ≥ 1− α
2

.

Equation (5.3) now implies

dκ

dt

∣∣∣∣
t=0

≤ − (1− α)(p− 2) log λ

2p

(
ps2(0)

2

)(2p−4)/p

κ(0) < 0.
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So κ(t) satisfies

(5.5) 0 < κ(t) <
1− α

72

for 0 ≤ t < δ for a small number δ > 0. The same arguments as before now imply

(5.6)
dκ

dt
≤ − (1− α)(p− 2) log λ

2p

(
ps2(t)

2

)(2p−4)/p

κ(t) < 0

for 0 ≤ t < δ. Since κ and s2 are continuous and positive on [0, T1], the estimates
(5.5) and (5.6) apply for 0 ≤ t ≤ T1. Applying Grönwall’s inequality to (5.6) gives
us for 0 ≤ t ≤ T1:

(5.7) κ(t) ≤ κ(0) exp

(
− (1− α)(p− 2) log λ

2p

(p
2

)(2p−4)/p
∫ t

0

s2(τ)(2p−4)/p dτ

)
.

Applying the third inequality in Lemma 5.4 to this integral gives us:

∫ t

0

s2(τ)(2p−4)/p dτ ≥
∫ t

0

s2(0)(2p−4)/p
(

1 + 2(p−2)/pC0s2(0)(2p−4)/pτ
)−1

dτ

=
1

2(p−2)/pC0
log
(

1 + 2(p−2)/pC0s2(0)(2p−4)/pt
)
.

Recalling that C0 = 2p−4
p

(
p
2

)(2p−4)/p
log λ, (5.7) now becomes:

κ(t) ≤ κ(0) exp

(
− (1− α)

2(3p−2)/p
log
(

1 + 2(p−2)/pC0s2(0)(2p−4)/pt
))

= κ(0)
(

1 + 2(p−2)/pC0s2(0)(2p−4)/pt
)−β

,(5.8)

giving us the first inequality of the lemma.
To prove the second inequality, arguing as before for T1 ≤ t ≤ T , we get:

d

dt
∆s2 = − log λ

(
∂

∂s1

(
s2Ψp(u)

)
∆s1 +

∂

∂s2

(
s2Ψp(u)

)
∆s2

+
1

2

∑
j,k=1,2

djk (ξ1, ξ2) ∆sj∆sk

)



20 DOMINIC VECONI

for ξ = (ξ1, ξ2) satisfying min {sj , s̃j} ≤ ξj ≤ max {sj , s̃j}. Thus, using assumption

(1) and positivity of si, Ψ̇p, and ∆s2,

d

dt

(
∆s2

s1

)
=

1

s1

d

dt
∆s2 −

1

s2
1

ṡ1∆s2

= − log λ

(
2s1s2Ψ̇p(u)

∆s1

s1
+
(

2s2
2Ψ̇p(u) + Ψp(u)

) ∆s2

s1

)
− 1

2
log λ

∑
j,k=1,2

djk (ξ1, ξ2)
∆sj∆sk
s1

− log λΨp(u)
∆s2

s1

≤ −2 log λ
(

Ψp(u)− αs1s2Ψ̇p(u) + s2
2Ψ̇p(u)

) ∆s2

s1

− 1

2
log
∑
j,k

dj,k (ξ1, ξ2)
∆sj∆sk
s1

≤ −2 log λ
(

Ψp(u)− αs1s2Ψ̇p(u)
) ∆s2

s1
− log λ

2

∑
j,k

dj,k (ξ1, ξ2)
∆sj∆sk
s1

.

Observe that

Ψp

Ψ̇p

− αs1s2 =
p

p− 2

(
s2

1 + s2
2

)
− αs1s2 ≥

(
p

p− 2
− α

2

)(
s2

1 + s2
2

)
≥ p(2− α)

2(p− 2)

(
s2

1 + s2
2

)
.

It follows, in particular, that

Ψp(u)− αs1s2Ψ̇p(u) ≥
(p

2

)(2p−4)/p 2− α
2

(
s2

1 + s2
2

)(p−2)/p
.

Furthermore, applying the inequality in (5.2), we get:

d

dt

(
∆s2

s1

)
≤ − log λ

(p
2

)(2p−4)/p

(2− α)s
(2p−4)/p
1

∆s2

s1

+ log λ
(p

2

)(2p−4)/p

s
(2p−4)/p
1

12(p− 2)

p

(
ξ2
1 + ξ2

2

s2
1

)(p−4)/2p(
∆s2

s1

)2

.

In particular, if we denote χ(t) = ∆s2
s1

(t), we find that

(5.9)

dχ

dt
≤ − log λ

(p
2

)(2p−4)/p

s
(2p−4)/p
1 χ

(
2− α− 12(p− 2)

p

(
ξ2
1 + ξ2

2

s2
1

)(p−4)/2p

χ

)
.

Recall that min {sj , s̃j} ≤ ξj ≤ max {sj , s̃j}, and that ∆sj = s̃j − sj for j = 1, 2.
Therefore,

sj − |∆sj | ≤ ξj ≤ sj + |∆sj |.
In particular, since |∆s1| ≤ α∆s2 by assumption (1), we get:

ξ2
1 + ξ2

2 ≥ ξ2
1 ≥ (s1 − |∆s1|)2 ≥ (s1 − α∆s2)

2
= s2

1

(
1− α∆s2

s1

)2

≥ s2
1(1− χ)2.

Furthermore, since s2(t) ≤ s1(t) whenever T1 ≤ t ≤ T , we get:

ξ2
1 + ξ2

2

s2
1

≤
(

1 +
|∆s1|
s1

)2

+

(
s2

s1
+

∆s2

s1

)2

≤ (1 + αχ)
2

+ (1 + χ)2 < 2(1 + χ)2.
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It follows that:(
ξ2
1 + ξ2

2

s2
1

)(p−4)/2p

≤

{
(1− χ)(p−4)/p, p = 3, 4;

2(p−4)/2p(1 + χ)(p−4)/p, p ≥ 5.

Since s1(T1) = s2(T1), by the first estimate in this lemma and assumption (2), we
find that:

0 ≤ χ(T1) =
∆s2(T1)

s1(T1)
=

∆s2(T1)

s2(T1)
≤ ∆s2(0)

s2(0)
≤ 1− α

72
.

Again, applying assumption (2) gives us:

2− α− 12(p− 2)

p

(
ξ2
1 + ξ2

2

s2
1

)(p−4)/2p

χ(T1) ≥ 1− α
2

.

So (5.9) now becomes

(5.10)
dχ

dt

∣∣∣∣
t=T1

< − (1− α) log λ

2

(p
2

)(2p−4)/p

s1(T1)(2p−4)/pχ(T1) < 0.

Repeating the argument for the first estimate in this lemma, we find that the
inequalities in (5.10) hold for all t ∈ [T1, T ]. For T1 ≤ t ≤ b ≤ T , by Grönwall’s
inequality and inequality (d) in Lemma 5.4, we get:

χ(t) ≤ χ(T1) exp

(
− (1− α) log λ

2

(p
2

)(2p−4)/p
∫ t

T1

s1(τ)(2p−4)/p dτ

)
≤ χ(T1) exp

(
− (1− α) log λ

2

(p
2

)(2p−4)/p

s1(b)(2p−4)/p

×
∫ t

T1

(
1 + 2(p−2)/pC0s1(T1)(2p−4)/ps1(T1)(2p−4)/p(b− τ)

)−1

dτ

)
= χ(T1) exp

(
p(1− α)

2(3p−2)/p(p− 2)
log

(
1 + 2(p−2)/pC0s1(T1)(2p−4)/p(b− t)

1 + 2(p−2)/pC0s1(T1)(2p−4)/p(b− T1)

))
= χ(T1)

(
1 + 2(p−2)/pC0s1(T1)(2p−4)/p(b− t)

1 + 2(p−2)/pC0s1(T1)(2p−4)/p(b− T1)

)βp/(p−2)

.

The second estimate now follows.
To prove the final inequality, (5.6) and (5.10) show that κ(a) ≥ κ(T1) and

χ(T1) ≥ χ(b) for 0 ≤ a ≤ T1 ≤ b ≤ T . More explicitly,

∆s2(T1)

s2(T1)
≤ ∆s2(a)

s2(a)
and

∆s2(b)

s1(b)
≤ ∆s2(T1)

s2(T1)
.

Recalling that s2(T1) = s1(T1), combining the above inequalities gives us:

∆s2(b) ≤ s1(b)∆s2(T1)

s2(T1)
≤ s1(b)∆s2(a)

s2(a)
.

By the assumption that |∆s1| ≤ α∆s2, we get

∆s2 ≤ ‖∆s‖ ≤
√

1 + α2∆s2,

and combining this inequality with the preceding one gives us the final inequality
in the statement of the lemma. �
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Our final estimate concerns the size of the angles between tangent vectors in
the unstable cones near the singularities. This will be used in examining the dis-
tance between the unstable subspaces of nearby points in neighborhoods of the
singularities.

Recall the neighborhood Ũ1 of S is given by Ũ1 =
⋃m
k=1 φ

−1
k (Dr̃1). For x ∈ Ũ1,

define:

(5.11) γ(x) = max
v,w∈K+(x)
‖v‖=‖w‖=1

{
∠ (Dgxv,Dgxw)

∠(v, w)

}

and denote γj(x) = γ(gj(x)) for j ≥ 0.

Lemma 5.6. For every x ∈ Ũ1 with gj(x) in the same component of Ũ1 for j =
0, . . . , k, we have:

k−1∏
j=0

γj(x) ≤
(

1 + C0s2(0)(2p−4)/pk
)−p/(p−2)

,

where C0 is the constant from Lemma 5.4.

Proof. Denote z = Φkj(φk(x)) = (s1(0), s2(0)), so that

(Φkj ◦ φk)
(
gj(x)

)
= (s1(j), s2(j)).

Consider a tangent vector v = (ζ1, ζ2) in C along a trajectory of the vector field
(3.1). Reparametrizing η = ζ2/ζ1 with respect to s1 instead of t along this curve,
equation (3.3) implies

dη

ds1
=
dη

dt

(
ds1

dt

)−1

= −2

((
1 + η2

)
s2

Ψ̇p(u)

Ψp(u)
+

(
1

s1
Ψ̇p(u) +

s2
1 + s2

2

s1

Ψ̇p(u)

Ψp(u)

)
η

)
.

For i = 1, 2, let ηi(s1) = ηi(s1, s1(j), η0
i ) be a solution to this differential equation

with initial condition ηi(s1(j)) = η0
i . Then,

d

dt
(η1 − η2) = −2

1

s1

(
1 +

Ψ̇p(u)

Ψp(u)

(
s2

1 + s2
2 + s1s2(η1 + η2)

))
(η1 − η2) .

If (ξ1, ξ2) = D (Φkj ◦ φk)
−1
z (ζ1, ζ2) ∈ K+(x), then |ηi| < α < 1 for i = 1, 2 (see

Lemma 3.4), so η1 + η2 > −2. Positivity of Ψp and Ψ̇p now yields:

d

dt
(η1 − η2) ≤ −2

1

s1

(
1 +

Ψ̇p(u)

Ψp(u)
(s1 − s2)

2

)
(η1 − η2) ,
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and so by Grönwall’s inequality,

|η1 (s1(j + 1))− η2 (s1(j + 1)) |

≤
∣∣η0

1 − η0
2

∣∣ exp

(
−2

∫ s1(j+1)

s1(j)

1

s1

(
1 +

Ψ̇p(u)

Ψp(u)
(s1 − s2)

2

)
ds1

)

≤
∣∣η0

1 − η0
2

∣∣ exp

(
−2

∫ s1(j+1)

s1(j)

ds1

s1

)

=
∣∣η0

1 − η0
2

∣∣ ( s1(j)

s1(j + 1)

)2

=
∣∣η0

1 − η0
2

∣∣ (s2(j + 1)

s2(j)

)2

,

where the final equality follows from the fact that the trajectories lie on hyperbolas,
and so the product s1s2 is constant. Observe that if v = (v1, v2) and w = (w1, w2)
are two vectors with ηv = v2/v1 and ηw = w2/w1, then

∠(v, w) = |arctan ηv − arctan ηw| ,
and so by concavity of η 7→ arctan η and conformality of the coordinate map Φkj◦φk,

γj(x) ≤ max
η1,η2

{∣∣η1(s1(j + 1), s1(j), η0
1)− η2(s1(j + 1), s1(j), η0

2)
∣∣

|η0
1 − η0

2 |

}

≤
(
s2(j + 1)

s2(j)

)2

.

It follows that
k−1∏
j=0

γj(x) ≤
(
s2(k)

s2(0)

)2

.

The desired result now follows from inequality (b) in Lemma 5.4, since by hypothesis

gj(x) is in the same component of Ũ1, hence Gjp(z) ∈ Dr̃1 for 0 ≤ j ≤ k. �

6. Thermodynamics of Young Diffeomorphisms

Given a C1+α diffeomorphism f on a compact Riemannian manifold M , we call
an embedded C1 disc γ ⊂M an unstable disc (resp. stable disc) if for all x, y ∈ γ, we
have d(f−n(x), f−n(y))→ 0 (resp. d(fn(x), fn(y))→ 0) as n→ +∞. A collection
of embedded C1 discs Γ = {γi}i∈I is a continuous family of unstable discs if there
is a Borel subset Ks ⊂ M and a homeomorphism Φ : Ks × Du →

⋃
i γi, where

Du ⊂ Rd is the closed unit disc for some d < dimM , satisfying:

• The assignment x 7→ Φ|{x}×Du is a continuous map from Ks to the space

of C1 embeddings Du ↪→ M , and this assignment can be extended to the
closure Ks;
• For every x ∈ Ks, γ = Φ({x} ×Du) is an unstable disc in Γ.

Thus the index set I may be taken to be Ks×{0} ⊂ Ks×Du. We define continuous
families of stable discs analogously.

A subset Λ ⊂M has hyperbolic product structure if there is a continuous family
Γu = {γui }i∈I of unstable discs and a continuous family Γs = {γsj }j∈J of stable
discs such that
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• dim γui + dim γsj = dimM for all i, j;
• the unstable discs are transversal to the stable discs, with an angle uni-

formly bounded away from 0;
• each unstable disc intersects each stable disc in exactly one point;
• Λ =

(⋃
i γ

u
i

)
∩
(⋃

j γ
s
j

)
.

A subset Λ0 ⊂ Λ with hyperbolic product structure is an s-subset if the con-
tinuous family of unstable discs defining Λ0 is the same as the continuous family
of unstable discs for Λ, and the continuous family of stable discs defining Λ0 is a
subfamily Γs0 of the continuous family of stable discs defining Γ0. In other words,
if Λ0 ⊂ Λ has hyperbolic product structure generated by the families of stable and
unstable discs given by Γs0 and Γu0 , then Λ0 is an s-subset if Γs0 ⊆ Γs and Γu0 = Γu.
A u-subset is defined analogously.

Definition 6.1. A C1+α diffeomorphism f : M →M , with M a compact Riemann-
ian manifold, is a Young’s diffeomorphism if the following conditions are satisfied:

(Y1) There exists Λ ⊂M (called the base) with hyperbolic product structure, a
countable collection of continuous subfamilies Γsi ⊂ Γs of stable discs, and
positive integers τi, i ∈ N, such that the s-subsets

Λsi :=
⋃
γ∈Γs

i

(
γ ∩ Λ

)
⊂ Λ

are pairwise disjoint and satisfy:
(a) invariance: for x ∈ Λsi ,

fτi(γs(x)) ⊂ γs(fτi(x)), and fτi(γu(x)) ⊃ γu(fτi(x)),

where γu,s(x) denotes the (un)stable disc containing x; and,
(b) Markov property : Λui := fτi(Λsi ) is a u-subset of Λ such that for x ∈ Λsi ,

f−τi(γs(fτi(x)) ∩ Λui ) = γs(x) ∩ Λ, and fτi(γu(x) ∩ Λsi ) = γu(fτi(x)) ∩ Λ.

(Y2) For γu ∈ Γu, we have

µγu(γu ∩ Λ) > 0, and µγu

(
cl
(

(Λ \
⋃
i Λsi ) ∩ γu

))
= 0,

where µγu is the induced Riemannian leaf volume on γu and cl(A) denotes
the closure of A in M for A ⊆M .

(Y3) There is a ∈ (0, 1) so that for any i ∈ N, we have:
(a) For x ∈ Λsi and y ∈ γs(x),

d(F (x), F (y)) ≤ ad(x, y);

(b) For x ∈ Λsi and y ∈ γu(x) ∩ Λsi ,

d(x, y) ≤ ad(F (x), F (y)),

where F :
⋃
i Λsi → Λ is the induced map defined by

F |Λs
i

:= fτi |Λs
i
.

(Y4) Denote JuF (x) = det
∣∣DF |Eu(x)

∣∣. There exist c > 0 and κ ∈ (0, 1) such
that:
(a) For all n ≥ 0, x ∈ F−n (

⋃
i Λsi ) and y ∈ γs(x), we have∣∣∣∣log

JuF (Fn(x))

JuF (Fn(y))

∣∣∣∣ ≤ cκn;
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(b) For any i0, . . . , in ∈ N with F k(x), F k(y) ∈ Λsik for 0 ≤ k ≤ n and
y ∈ γu(x), we have∣∣∣∣log

JuF (Fn−k(x))

JuF (Fn−k(y))

∣∣∣∣ ≤ cκk.
(Y5) There is some γu ∈ Γu such that

∞∑
i=1

τiµγu (Λsi ) <∞.

We say the tower satisfies the arithmetic condition if the greatest common divisor
of the integers {τi} is 1.

We use the following result to discuss thermodynamics of Young’s diffeomor-
phisms, which was originally presented as Proposition 4.1 and Remark 4 in [15].

Proposition 6.2. Let f : M →M be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M satisfying conditions (Y1)-(Y5), and assume τ is the first
return time to the base of the tower. Then the following hold:

(1) There exists an equilibrium measure µ1 for the potential ϕ1, which is the
unique SRB measure.

(2) Assume that for some constants C > 0 and 0 < h < hµ1
(f), with hµ1

(f)
the metric entropy, we have

Sn := # {Λsi : τi = n} ≤ Cehn

Define

(6.1) log λ1 = sup
i≥1

sup
x∈Λs

i

1

τi
log |JuF (x)| ≤ max

x∈M
log |Juf(x)| ,

and

(6.2) t0 =
h− hµ1

(f)

log λ1 − hµ1
(f)

.

Then for every t ∈ (t0, 1), there exists a measure µt ∈ M(f, Y ), where
Y =

{
fk(x) : x ∈

⋃
Λsi , 0 ≤ k ≤ τ(x)− 1

}
, which is a unique equilibrium

measure for the potential ϕt.
(3) Assume that the tower satisfies the arithmetic condition, and that there is

K > 0 such that for every i ≥ 0, every x, y ∈ Λsi , and any j ∈ {0, . . . , τi},
(6.3) d

(
f j(x), f j(y)

)
≤ K max{d(x, y), d(F (x), F (y))}.

Then for every t0 < t < 1, the measure µt has exponential decay of corre-
lations and satisfies the Central Limit Theorem with respect to a class of
functions which contains all Hölder continuous functions on M .

7. Young towers over pseudo-Anosov diffeomorphisms

Our argument that smooth pseudo-Anosov diffeomorphisms are Young’s diffeo-
morphisms requires the construction of a hyperbolic tower on pseudo-Anosov home-
omoprhisms first. We begin this section by constructing this hyperbolic tower, tak-
ing an element of the Markov partition of the pseudo-Anosov homeomorphism as
the base of the tower.

We assume that our pseudo-Anosov homeomorphism f admits only one singular-
ity; the analysis follows similarly with more singularities, but the notation becomes
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unwieldy due to the different numbers of prongs at each singularity. Therefore we
state without proof that the arguments of this section imply that pseudo-Anosov
diffeomorphisms admitting multiple singularities are also Young diffeomorphisms.
An example of a pseudo-Anosov homeomorphism of the genus-2 torus admitting
only one singularity may be found in [14].

By Proposition 2.9, a pseudo-Anosov surface homeomorphism f : M → M

admits a Markov partition of arbitrarily small diameter. Let P̃ be such a Markov

partition, and let P̃ ∈ P̃ be an element of the Markov partition contained in a chart

U1 not intersecting with the chart U0 of the singularity x0. For x ∈ P̃ , let γ̃s(x)
and γ̃u(x) respectively be the connected component of the intersection of the stable

and unstable leaves with P̃ containing x.

Let τ̃(x) be the first return time of x to IntP̃ for x ∈ P̃ . For x with τ̃(x) <∞,
define:

Λ̃s(x) =
⋃

y∈Ũu(x)\Ãu(x)

γ̃s(y),

where Ũu(x) ⊆ γ̃u(x) is an interval containing x, open in the induced topology of

γ̃(x), and Ãu(x) ⊂ Ũu(x) is the set of points that either lie on the boundary of the

Markov partition, or never return to P̃ . One can show the leaf volume of Ãu(x)

is 0, so that for each y ∈ Λ̃s(x), the leaf volume of γ̃(y) ∩ Λ̃s(x) is positive. We
further choose our interval Uu(x) so that

• for y ∈ Λ̃s(x), we have τ̃(y) = τ̃(x); and,

• for y ∈ P̃ with τ̃(x) = τ̃(y), we have y ∈ Λ̃(z) for some z ∈ P̃ .

One can show the image under f̃ τ̃(x) of Λ̃s(x) is a u-subset containing f̃ τ̃(x)(x),

and that for x, y ∈ P̃ with finite return time, either Λ̃s(x) and Λ̃s(y) are disjoint or
coinciding. As discussed in [15], this gives us a countable collection of disjoint sets

Λ̃si and numbers τ̃i for which the pseudo-Anosov homeomorphism f : M →M is a

Young map, with s-sets Λ̃si , inducing times τ̃i, and tower base

Λ̃ :=

∞⋃
i=1

cl
(
Λ̃si
)
.

In the following theorem, Conditions (Y1′) through (Y5′) are virtually identi-
cal to Conditions (Y1) through (Y5) in Definition 6.1. They are reprinted in the
following theorem because pseudo-Anosov homeomorphisms are not true diffeo-
morphisms, and thus by definition cannot satisfy Conditions (Y1) through (Y5).
However, analogous conditions may be established for pseudo-Anosov homeomor-
phisms, and these conditions will be used to show that globally smooth realizations
of pseudo-Anosov diffeomorphisms (which are true diffeomorphisms) are Young’s
diffeomorphisms.

Theorem 7.1. The set Λ̃ defined above for the pseudo-Anosov homeomorphism
f : M →M satisfies the following conditions:

(Y1′) Λ̃ has hyperbolic product structure, and the sets
{

Λ̃si

}
i∈N

are pairwise dis-

joint s-subsets and satisfy:

(a) invariance: for x ∈ Λ̃si ,

fτi(γs(x)) ⊂ γs(fτi(x)), and fτi(γu(x)) ⊃ γu(fτi(x)),
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where γu,s(x) denotes the (un)stable disc containing x; and,

(b) Markov property: Λ̃ui := fτi(Λsi ) is a u-subset of Λ̃ such that for

x ∈ Λ̃si ,

f−τi(γs(fτi(x)) ∩ Λ̃ui ) = γs(x) ∩ Λ̃, and fτi(γu(x) ∩ Λ̃si ) = γu(fτi(x)) ∩ Λ̃.

(Y2′) For γu ∈ Γu, we have

νs
(
γu ∩ Λ̃

)
> 0, and νs

(
cl
( (

Λ̃ \
⋃
i Λ̃si

)
∩ γu

))
= 0,

where νs is the transversal invariant measure with respect to the stable
foliation Fs for f .

(Y3′) There is a ∈ (0, 1) so that for any i ∈ N, we have:

(a) For x ∈ Λ̃si and y ∈ γs(x),

ds(F (x), F (y)) ≤ ads(x, y);

(b) For x ∈ Λ̃si and y ∈ γu(x) ∩ Λ̃si ,

du(x, y) ≤ adu(F (x), F (y)),

where F :
⋃
i Λ̃si → Λ̃ is the induced map defined by

F |Λ̃s
i

:= fτi |Λ̃s
i

and ds and du are the distances in the stable and unstable leaves of the

foliations Fs and Fu in P̃ , given respectively by νu and νs.
(Y4′) Denote JuF (x) = det

∣∣DF |Eu(x)

∣∣. There exist c > 0 and κ ∈ (0, 1) such
that:

(a) For all n ≥ 0, x ∈ F−n
(⋃

i Λ̃si

)
and y ∈ γs(x), we have∣∣∣∣log

JuF (Fn(x))

JuF (Fn(y))

∣∣∣∣ ≤ cκn;

(b) For any i0, . . . , in ∈ N with F k(x), F k(y) ∈ Λ̃sik for 0 ≤ k ≤ n and
y ∈ γu(x), we have∣∣∣∣log

JuF (Fn−k(x))

JuF (Fn−k(y))

∣∣∣∣ ≤ cκk.
(Y5′) There is some γu ∈ Γ̃u such that

∞∑
i=1

τiν
s
(
Λ̃si ∩ γu

)
<∞.

Proof. Properties (Y1′), (Y3′), and (Y4′) all follow from Proposition 2.7. Property
(Y2′) follows because x ∈ cl

(
(Λ \

⋃
i Λsi ) ∩ γu

)
implies either that x ∈ ∂P or

τ(x) =∞, both of which happen on a set of Lebesgue measure 0 (and the smooth
measure for pseudo-Anosov homeomorphisms has density with respect to Lebesgue
measure). And since τ is a first return time, (Y5′) follows from Kac’s theorem. �

The next lemma gives a bound on the number Sn of distinct s-subsets Λ̃si with a
given inducing timeτ̃i = n. Since the pseudo-Anosov homeomorphism f is topologi-
cally conjugate to the smooth realization g, this will eventually give us an analogous
bound on the number of distinct s-subsets for the base of the tower for g. (See Con-
dition (2) of Proposition 6.2.)
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Lemma 7.2. There exists h < htop(f) such that Sn ≤ ehn, where Sn is the number

of s-sets Λ̃si with inducing time τ̃i = n.

Proof. The proof is analogous to [15], Lemma 6.1, since pseudo-Anosov homeomor-
phisms admit finite Markov partitions. �

Let H : M →M be the conjugacy map so that g◦H = H ◦f , and let P = H(P̃),

P = H(P̃ ). Then P is a Markov partition for the pseudo-Anosov diffeomorphism
(M, g), and P is a partition element. By continuity of H, we may assume the

elements of P have arbitrarily small diameter. Further let Λ = H(Λ̃). Then Λ
has direct hyperbolic product structure with full length stable and unstable curves

γs(x) = H(γ̃s(x)) and γu(x) = H(γ̃u(x)). Then Λsi = H(Λ̃si ) are s-sets and

Λui = H(Λ̃ui ) = gτi(Λsi ), where τi = τ̃i for each i, and τ(x) = τi whenever x ∈ Λsi .
Recall U0 =

⋃m
k=1 φ

−1
k (Dr0). If there is only one singularity, U0 = φ−1

0 (Dr0).
Given Q > 0, we can take r0 in the construction of g to be so small and refine the

partition P̃ so that the partition element P̃ (and hence P ) may be chosen so that

(7.1) gn(x) 6∈ U0 for any 0 ≤ n ≤ Q

and any x so that either x ∈ P , or x 6∈ U0 while g−1(x) ∈ U0.

We now prove the set Λ = H(Λ̃) constructed above is the base of a Young tower
onM for the diffeomorphism g. Properties (Y1), (Y2), and (Y5) are straightforward
to verify. Our strategy in proving these conditions, along with (Y3), is similar to
that used in [15], but we restate it here for the reader’s convenience. The main
difference between the argument used for these pseudo-Anosov diffeomorphisms
and the Katok map comes in proving (Y4), where we use a local trivialization of
our surface M as opposed to the universal cover of T2 by R2.

Theorem 7.3. The collection of s-subsets Λsi = H(Λ̃si ) satisfies conditions (Y1)
- (Y5), making the smooth pseudo-Anosov diffeomorphism g : M → M a Young’s
diffeomorphism.

Proof. Condition (Y1) follows from the corresponding properties of the pseudo-
Anosov homeomorphism f since H is a topological conjugacy. The fact that
µγu (γu ∩ Λ) > 0 follows from the corresponding property for the γ̃u leaves. Sup-
pose x ∈ cl

(
(Λ \

⋃
i Λsi ) ∩ γu

)
. Then either x lies on the boundary of the Markov

partition element P , or τ(x) = ∞, and since both the Markov partition bound-
ary and the set of x ∈ P with τ(x) =∞ are Lebesgue null, we get condition (Y2).
Condition (Y5) follows from Kac’s formula, since the inducing times are first return
times to the base of the tower.

To prove condition (Y3), define the itinerary I(x) = {0 = n0 < n1 < · · · <
n2L+1 = τ(x)} ⊂ Z of a point x ∈ Λ, with L = L(x), so that gk(x) ∈ U0 if and
only if n2j−1 ≤ k < n2j for j ≥ 1. Assume Λ is small enough so that I(x) = I(y)
whenever y ∈ γ(x) ⊂ Λ.

Let x ∈ Λsi , y ∈ γs(x) ⊂ Λsi . Denote xn = gn(x) and yn = gn(y). Note
γs(x) ⊂ Fs(x). By invariance of the stable and unstable measured foliations Fs
and Fu, yn lies on the stable curve Fs(xn) through xn for every n ≥ 1. For
n2j ≤ n < n2j+1, Txn

Fs(xn) = Esxn
lies inside C−x ; in fact one can show that

Fs(xn) is an admissible manifold. Thus the segment of Fs(xn) joining xn and
yn expands uniformly under the homeomorphism f−1. Due to our choice of the
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number Q, there is a number β ∈ (0, 1) such that

(7.2) d
(
xn2j+1

, yn2j+1

)
≤ βn2j+1−n2jd

(
xn2j

, yn2j

)
≤ βQd

(
xn2j

, yn2j

)
.

Now we consider n2j−1 ≤ n < n2j . Let
[
m1
j ,m

2
j

]
⊆ [n2j−1, n2j − 1] be the largest

interval (possibly empty) with xn in the closure of Ũ1 = φ−1
0 (Dr̃1(0)) for every n ∈[

m1
j ,m

2
j

]
. By virtue of Lemma 5.2, there is a uniform T > 0 with m1

j − n2j−1 ≤ T
and n2j −m2

j ≤ T . Thus there is a constant C > 0 so that

(7.3) d
(
xm1

j
, ym1

j

)
≤ Cd

(
xn2j−1

, yn2j−1

)
and d

(
xn2j

, yn2j

)
≤ Cd

(
xm2

j
, ym2

j

)
.

Now, let s(t) and s̃(t) be solutions to equation (3.1) with s(0) = xm1
j

and s̃(0) = ym1
j
.

Assumption (1) of Lemma 5.5 is satisfied since yn lies in the stable cone of xn for
every n, and Assumption (2) can be assured if our choice of r0 in the slowdown
construction of the pseudo-Anosov diffeomorphism is chosen to be sufficiently small.
So by the final inequality of this lemma, letting a = m1

j and b = m2
j , we get:

∥∥∆s
(
m2
j

)∥∥ ≤√1 + α2
s1

(
m2
j

)
s2

(
m1
j

) ∥∥∆s
(
m1
j

)∥∥ .
Let ∆kjs(t) = Φ−1

kj (s̃(t)) − Φ−1
kj (s(t)). Because Φkj is uniformly bounded above

and below, there is a constant K > 0 such that for every t for which s̃(t) and s(t)
are defined,

(7.4) K−1 ‖∆kjs(t)‖ ≤ ‖∆s(t)‖ ≤ K ‖∆kjs(t)‖ ,

and since the Riemannian metric in U0 is given in coordinates by dt21 + dt22 =(
Φ−1
kj

)∗ (
ds2

1 + ds2
2

)
, we get ‖∆kjs(n)‖ = d (xn, yn) for n ∈

[
m1
j ,m

2
j

]
. Therefore,

combining this observation with (7.4), (7.2), (7.3), and (5.1), we get:

d
(
xn2j

, yn2j

)
≤ CK2

√
1 + α2

s1

(
m2
j

)
s2

(
m1
j

)d(xm1
j
, ym1

j

)
≤ C2K2

√
1 + α2

s1

(
m2
j

)
s2

(
m1
j

)d (xn2j−1 , yn2j−1

)
≤ C2K2βQ

√
1 + α2

s1

(
m2
j

)
s2

(
m1
j

)d (xn2j−2 , yn2j−2

)
.

Since s1

(
m2
j

)
and s2

(
m1
j

)
are each of order r0, their quotient is uniformly bounded,

so assuming Q is sufficiently large, there is a 0 < θ1 < 1 for which

(7.5) d
(
xn2j

, yn2j

)
≤ θ1d

(
xn2j−2

, yn2j−2

)
and a similar bound holds for odd indices of the itinerary. It follows that

d
(
gτ(x)(x), gτ(x)(y)

)
≤ θL1 d(x, y),

where L is determined by the itinerary I(x). Condition (Y3a) follows, and (Y3b)
follows by the same argument applied to g−1.

To prove condition (Y4), we prove condition (Y4a) and note that (Y4b) can
be proved similarly by considering g−1 instead of g. We use the following general
statement, originally presented as Lemma 6.3 in [15]:
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Lemma 7.4. Let {An}, {Bn}, 0 ≤ n ≤ N , be two collections of linear transforma-
tions of Rd. Given a subspace E ⊂ Rd, let K = K(E, θ) denote the cone of angle
θ around E. Assume the subspace E is such that:

(a) An(K) ⊂ K for all n;
(b) There are γn > 0 such that for each n, and for any unit vectors v, w ∈ K,

∠ (Anv,Anw) ≤ γn∠(v, w);

(c) There are d > 0 and δn > 0 such that for each n ≥ 0, and every v ∈ K,

‖Anv −Bnv‖ ≤ dδn ‖Anv‖ ;

(d) There is c > 0 independent of n such that for every v ∈ K,

‖Anv‖ ≥ c ‖v‖ .

Then there is a C > 0, independent of the choice of linear transformations {An}
and {Bn}, such that for every v, w ∈ K,

(7.6)

∣∣∣∣∣∣log

∥∥∥∏N
n=0Anv

∥∥∥∥∥∥∏N
n=0Bnw

∥∥∥
∣∣∣∣∣∣ ≤ C

(
d

N∑
n=0

δn + ∠(v, w)

N∑
n=0

n∏
k=0

γk

)
.

Let x ∈ P with N := τ(x) − 1 < ∞, and let y ∈ γs(x) ⊂ P . For each n ≥ 0,
once again let xn = gn(x) and yn = gn(y), and in each tangent space Txn

M ,
let K+

n = K+(xn) ⊂ Txn
M denote the cone of angle arctanα around Eu(xn)

described in Lemma 3.4. By this lemma, the sequence of cones {K+
n } is invariant

under Dg. For each n, denote Ãn = Dgxn : TxnM → Txn+1M and B̂n = Dgyn :
TynM → Tyn+1

M . Further, since yn lies on the stable leaf of xn for all n, let
Pn : TynM → Txn

M denote parallel translation along the segment of the stable

leaf connecting yn to xn, and denote B̃n = Pn+1 ◦ B̂n ◦ P−1
n : Txn

M → Txn+1
M .

Using the orthonormal coordinates (ξ1, ξ2) for TxnM defined previously, so that ξ1
denotes the unstable direction and ξ2 denotes the stable direction (see the discussion
preceding Proposition 3.3), we may isometrically identify each tangent space Txn

M
with R2 with the Euclidean metric. Call this isometry Ξn : Txn

M → R2, and

denote An = Ξn+1 ◦ Ãn ◦ Ξ−1
n : R2 → R2 and Bn = Ξn+1 ◦ B̃n ◦ Ξ−1

n : R2 → R2.
Also let K = Ξn(K+

n ) ⊂ R2. Since Ξn is an isometry and K+
n is a cone of angle

arctanα for each n, K is independent of n and is thus well-defined. Finally, define
the numbers d = d(x, y), as well as

γn = max
v,w∈K

‖v‖=‖w‖=1

{
∠ (Anv,Anw)

∠(v, w)

}
and δn =

1

d
max

v∈K\{0}

{
‖Anv −Bnv‖
‖Anv‖

}
for each n ≥ 0.

The final step in proving our pseudo-Anosov diffeomorphism g is a Young’s
diffeomorphism relies on the following technical lemma. Its proof is somewhat
similar to the proof of Lemma 6.4 in [15], but requires some modifications related
to the subtle differences in the slowdown function used in the Katok map as opposed
to our pseudo-Anosov diffeomorphism g, as well as to the fact that the universal
cover of a surface that is not a torus is not R2.

Lemma 7.5. The linear operators An and Bn, as well as the cone K, all satisfy
the conditions of Lemma 7.4 using γn, δn, d, and N = τ(x) − 1 defined above.
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Furthermore, there are constants C̃ > 0 and 0 < θ2 < 1, independent of x ∈ P ,
such that:

τ(x)−1∑
n=0

δn < C̃,

τ(x)−1∑
n=0

n∏
k=0

γk < C̃, and

τ(x)−1∏
n=0

γn < θ2.

Proof of Lemma 7.5. Condition (a) of Lemma 7.4 follows from the definition of An,

the invariance of the cone family K+
n under Ãn, and the fact that Ξn : TxnM → R2

is an isometry for every n. Conditions (b) and (c) of Lemma 7.4 follow from the
definitions of γn and δn. Finally, condition (d) of Lemma 7.4 follows from the fact
that g is a diffeomorphism and Ξn is an isometry, so ‖An‖ =

∥∥Ξn+1 ◦Dgxn
◦ Ξ−1

n

∥∥
is uniformly bounded away from 0.

We begin by proving summability of δn. Assume diamP < ρ, where ρ is the
injectivity radius of M . Since yn ∈ γs(xn) and d(xn, yn) < ρ, the tangent vector

vn =
(
expxn

) ∣∣−1

B(ρ,n)
(yn) lies in the stable cone K−n ⊂ Txn

M , where B(ρ, n) =

{v ∈ Txn
M : ‖v‖ < ρ}. By symmetry of the vector field (3.1), we only need to

consider the behavior of the trajectories {xn} and {yn} in the “upper subsector”
Ssj ∩Suj , corresponding to the first quadrant in coordinates given by Φj ◦φ0. (Here
we denote Ssj , Suj , and Φj to be the subsets and functions described earlier as Sskj ,

Sukj , and Φkj , where we did not assume we only had one singularity.) Further

assume s̃2 := Im (Φj(φ0(y))) > s2 := Im (Φj(φ0(x))), so that ∆s2 := s̃2 − s2 > 0.
Otherwise, exchange the sequences {xn} and {yn}.

Recall the itinerary I(x) = {0 = n0 < n1 < · · · < n2L+1 = τ(x)} ⊂ Z of the
point x ∈ Λ, defined via xn ∈ U0 if and only if n2j−1 ≤ n < n2j . Consider
n2j ≤ n < n2j+1, so xn 6∈ U0. In coordinates, g(s1, s2) = (λs1, λ

−1s2), so An = Bn
are constant matrices, so δn = 0.

Suppose now that n2j+1 ≤ n < n2j+2. Denote by D(s1, s2) the coefficient matrix
of the variational equations of (3.1), given explicitly by

(7.7) D(s1, s2) = log λ

[
Ψp(u) + 2s2

1Ψ̇p(u) 2s1s2Ψ̇p(u)

−2s1s2Ψ̇p(u) −Ψp(u)− 2s2
2Ψ̇p(u)

]
.

Let s(t), s̃(t) : [n, n+ 1]→ R2 be solutions to (3.1) with initial condition s(n) = xn
and s̃(n) = yn, and let An(t) and Bn(t) be the 2× 2 Jacobian matrices

An(t) = d(θt) ((Φkj ◦ φk) (xn)) and Bn(t) = d(θt) ((Φkj ◦ φk) (yn)) ,

where θt : R2 → R2 is the time-t map of the flow of 3.1 on R2, for n ≤ t ≤ n + 1.
Then An(1) = An and Bn(1) = Bn from before, and An(t) and Bn(t) are the
unique solutions to the systems of differential equations

dAn(t)

dt
= D(s(n+ t))An(t) and

dBn(t)

dt
= D(s̃(n+ t))Bn(t)

with initial conditions An(0) = Bn(0) = Id. It follows that An(t)− Bn(t) satisfies
the differential equation

dAn(t)

dt
− dBn(t)

dt
=
(
D(s(n+ t))−D(s̃(n+ t))

)
An(t) +D(s̃(n+ t))(An(t)−Bn(t)).

Using the integrating factor exp
∫ t

0
D(s̃(n+ τ)) dτ = Bn(t), this implies

(7.8) An(t)−Bn(t) = Bn(t)

∫ t

0

Bn(t)−1
(
D(s(n+ t))−D(s̃(n+ t))

)
An(t) dτ.
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Note ‖D(s)−D(s̃)‖ ≤ ‖∂D(ξ)‖ ‖∆s‖, where ∂D(s) denotes the total derivative of
the matrix D(s1, s2) and ξ = (ξ1, ξ2), with min{si, s̃i} ≤ ξi ≤ max{si, s̃i}. This, in
conjunction with (7.8) and Lemma 5.3, gives us:

‖An −Bn‖ ≤ ‖Bn(1)‖ sup
0≤τ≤1

∥∥Bn(τ)−1
∥∥ ‖An(τ)‖ ‖D(s(n+ τ))−D(s̃(n+ τ))‖

≤ ‖Bn(1)‖ sup
0≤τ≤1

∥∥Bn(τ)−1
∥∥ ‖An(τ)‖ ‖∂D(ξ(n+ τ))‖ ‖∆s(n+ τ)‖

≤ Cp sup
0≤τ≤1

(
ξ2
1 + ξ2

2

)(p−4)/2p
(n+ τ) ‖∆s(n+ τ)‖ ,(7.9)

where Cp is a constant that depends on p, but not on n (as the matrices Bn(t) and
An(t) are uniformly bounded above and below in n and in t).

By condition (4) of Lemma 7.4 and the definition of δn,

δn ≤
1

cd(x, y)
‖An −Bn‖ =

1

c

d
(
xn2j+1

, yn2j+1

)
d(x, y)

‖An −Bn‖
d
(
xn2j+1 , yn2j+1

) .
We now claim that

(7.10) Dj :=

n2j+2−1∑
n=n2j+1

‖An −Bn‖
d
(
xn2j+1

, yn2j+1

) ≤ C,
where C is a constant independent of j. If this is true, then because δn = 0 for
n2j ≤ n < n2j+1, by (7.5),

τ(x)−1∑
n=0

δn =

L∑
j=1

n2j+2−1∑
n=n2j+1

δn =

L∑
j=1

1

c

d
(
xn2j+1

, yn2j+1

)
d(x, y)

n2j+2−1∑
n=n2j+1

‖An −Bn‖
d
(
xn2j+1 , yn2j+1

)
=
C

c

L∑
j=1

θj1 ≤ C̃,

and because θ1 is independent of x, y ∈ P , and c and C are both of order supn ‖An‖,
C̃ is also independent of our choice of x and y.

Recall that
[
m1
j ,m

2
j

]
⊆ [n2j + 1, n2j+2 − 1] is the largest (possibly empty) in-

terval of integers with xm ∈ Dr̃1 for each n ∈
[
m1
j ,m

2
j

]
, and

[
m1
j , Tj

]
is the largest

time interval for which s1(t) ≤ s2(t) for all m1
j ≤ t ≤ Tj . If

[
m1
j ,m

2
j

]
is empty,

then s(t) ∈ (Φkj ◦ φk) (Dr̃0 \Dr̃1) for all t ∈ [n2j+1, n2j+2 − 1]. In this instance, by
Lemma 5.2, n2j+2 − n2j+1 ≤ T is uniformly bounded, and hence (7.10) is a sum of
uniformly boundedly many terms that are uniformly bounded, by (7.9).

Now suppose
[
m1
j ,m

2
j

]
is nonempty. The sum in (7.10) splits into four different

sums:

(7.11) Dj =

 m1
j−1∑

n=n2j+1

+

Tj−1∑
n=m1

j

+

m2
j∑

n=Tj

+

n2j+2−1∑
n=m2

j+1

 ‖An −Bn‖
d
(
xn2j+1

, yn2j+1

) .
We show that each of these sums is themselves uniformly bounded. This is true for
the first and fourth sum, because in these instances, s(t) is in the annular region
(Φkj ◦ φk) (Dr̃0 \Dr̃1), and so the number of summands is uniformly bounded by
Lemma (5.1).



THERMODYNAMICS OF SMOOTH MODELS OF PSEUDO-ANOSOV HOMEOMORPHISMS33

To show this for the middle two sums, note that since s̃(t) ∈ R2 is in the stable
cone of s(t) for all t in the domain, we have

(7.12) |∆s1| ≤ α∆s2 ≤ ∆s2.

First, suppose m1
j ≤ n ≤ Tj − 1, so that s1(t) ≤ s2(t). We would like to apply

Lemma (5.5) in the interval
[
m1
j , n
]
, so we require

∆s2(m1
j )

s2(m1
j )
≤ 1−α

72 . This is attain-

able by choosing r0 to be sufficiently small and Q in (7.1) to be sufficiently large.
Applying Lemma (5.5) for n ≤ Tj − 1, and 0 ≤ τ ≤ 1, we get:

|∆s(n+ τ)| ≤ 2∆s2(n+ τ)

≤ 2
∆s2(m1

j )

s2(m1
j )

s2(n+ τ)
(

1 + 2
p−2
p C0s2(m1

j )
2p−4

p (n+ τ −m1
j )
)−β

≤ 2
∆s2(m1

j )

s2(m1
j )

s2(n+ τ)
(

1 + C0s2(m1
j )

2p−4
p (n+ τ −m1

j )
)−β

(7.13)

since β = 2−(3p−2)/p(1 − α) > 0. Recalling ξ(t) = (ξ1(t), ξ2(t)) is such that
min{si, s̃i} ≤ ξi ≤ max{si, s̃i} for i = 1, 2, (5.4) gives us

s2
2(t) ≤

(
ξ2
1 + ξ2

2

)
(t) ≤ 2(1 + κ)2s2

2(t) ≤ Cs2
2(t)

as κ = ∆s2
s2
≤ 1−α

72 . Estimates (7.9) and (7.13) give us:

‖An −Bn‖

≤ C
∥∥∆s(m1

j )
∥∥

s2(m1
j )

sup
0≤τ≤1

s2(n+ τ)
2p−4

p

(
1 + C0s2(m1

j )
2p−4

p (n+ τ −m1
j )
)−β

,

where we are using the fact that |∆s2| ≤ ‖∆s‖. Applying Lemma 5.4(b) on the
interval

[
m1
j , n+ 1

]
gives us

‖An −Bn‖

≤ C
∥∥∆s(m1

j )
∥∥

s2(m1
j )

sup
0≤τ≤1

s2(m1
j )

2p−4
p

(
1 + C0s2(m1

j )
2p−4

p (n+ τ −m1
j )
)−1−β

= C
∥∥∆s(m1

j )
∥∥ s2(m1

j )
p−4
p

(
1 + C0s2(m1

j )
2p−4

p (n−m1
j )
)−1−β

.

We make three observations. First, recalling that n = m1
j is the first time that

s(n) is within r̃1 of the origin, we observe that s2(m1
j ) is bounded above and below

by a constant multiple of r̃1, independent of x ∈ Λ or j = 1, . . . , L. Second,∥∥∆s(m1
j )
∥∥ = d

(
xm1

j
, ym1

j

)
, by definition of our Riemannian metric in U0. Third,

since Lemma 5.1 implies m1
j − n2j+1 is bounded by a value independent of x or j,

the value
d
(
x
m1

j
,y

m1
j

)
d
(
x2j+1,y2j+1

) is uniformly bounded independently of x, y ∈ Λ or j ≥ 1.

These three observations imply:

‖An −Bn‖
d (x2n+1, y2n+1)

≤ C
(

1 + C0s2(m1
j )

2p−4
p (n−m1

j )
)−1−β

.
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Therefore,

Tj−1∑
n=m1

j

‖An −Bn‖
d (x2n+1, y2n+1)

≤
∞∑

n=m1
j

C
(

1 + C0s2(m1
j )

2p−4
p (n−m1

j )
)−1−β

,

which is uniformly bounded in j. Therefore the second term in (7.11) is uniformly
bounded in j.

Finally, we turn our attention to the case where Tj ≤ n ≤ m2
j , where we have

s1 ≥ s2. By symmetry, we have that Tj ≥
(
m2
j +m1

j − 2
)
/2. By (7.12) and the

second inequality in Lemma 5.5, we have:

‖∆s(n+ τ)‖ ≤ 2∆s2(n+ τ)

≤ 2
∆s2(Tj)

s1(Tj)
s1(n+ τ)

(
1 + 2(p−2)/pC0s1(mj

2)(2p−4)/p(m2
j − n− τ)

1 + 2(p−2)/pC0s1(mj
2)(2p−4)/p(m2

j − Tj)

)β
.

Since min{si, s̃i} ≤ ξi ≤ max{si, s̃i} for i = 1, 2, we have si−|∆si| ≤ ξi ≤ si+|∆si|.
In particular,

ξ2
1 + ξ2

2 ≥ ξ2
1 ≥ (s1 − |∆s1|)2 = s2

1

(
1− |∆s1|

s1

)2

≥ s2
1

(
1− ∆s2

s1

)2

≥ C−1s2
1,

and

ξ2
1 + ξ2

2 ≤ (s1 + |∆s1|)2
+ (s2 + |∆s2|)2 ≤ 2 (s1 + ∆s2)

2
= 2s1

(
1 +

∆s2

s1

)2

≤ Cs2
1,

which both follow because ∆s2
s1

is monotonically decreasing by (5.10). Together,
these two estimates imply(

ξ1(n+ τ)2 + ξ2(n+ τ)2
)(p−4)/2p ≤ Cs1(n+ τ)(p−4)/p.

Applying (7.9) and inequality (a) in Lemma 5.4 to these inequalities gives us:

‖An −Bn‖ ≤ C sup
0≤τ≤1

[
s1(n+ τ)(p−4)/p ‖∆s(n+ τ)‖

]

≤ 2C
∆s2(Tj)

s1(Tj)
sup

0≤τ≤1

s1(n+ τ)
2p−4

p

(
1 + 2

p−2
p C0s1(m2

j )
2p−4

p (m2
j − n− τ)

1 + 2
p−2
p C0s1(m2

j )
2p−4

p (m2
j − Tj)

)β
≤ 2C

∆s2(Tj)

s1(Tj)
s1(m2

j )
2p−4

p sup
0≤τ≤1


(

1 + 2
p−2
p C0s1(m2

j )
2p−4

p (m2
j − n− τ)

)β−1

(
1 + 2

p−2
p C0s1(m2

j )
2p−4

p (m2
j − Tj)

)β
 .

By (5.6), since s1(m2
j ) and s2(m1

j ) are uniformly bounded,

|∆s2(Tj)|
s1(Tj)

s1(m2
j )

(2p−4)/p =
|∆s2(Tj)|
s2(Tj)

s1(m2
j )

(2p−4)/p

≤
|∆s2(m1

j )|
s2(m1

j )
s1(m2

j )
(2p−4)/p ≤ C|∆s2(m1

j )|.
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Furthermore, since
|∆s2(m1

j )|
d(xn2j+1

,yn2j+1)
is uniformly bounded, we finally obtain:

‖An −Bn‖
d
(
xn2j+1

, yn2j+1

) ≤ C
(

1 + 2
p−2
p C0s1(m2

j )
2p−4

p (m2
j − n)

)β−1

(
1 + 2

p−2
p C0s1(m2

j )
2p−4

p (m2
j − Tj)

)β .

Therefore,

m2
j∑

n=Tj

‖An −Bn‖
d
(
xn2j+1 , yn2j+1

) ≤ C (1 + 2
p−2
p C0s1(m2

j )
2p−4

p (m2
j − Tj)

)−β

×
m2

j∑
n=Tj

(
1 + 2

p−2
p C0s1(m2

j )
2p−4

p (m2
j − n)

)β−1

≤ C
(

1 + 2
p−2
p C0s1(m2

j )
2p−4

p (m2
j − Tj)

)−β
×

(
1 +

∫ m2
j−Tj

0

(
1 + 2

p−2
p C0s1(m2

j )
2p−4

p τ
)β−1

dτ

)

≤ C
(

1 + 2
p−2
p C0s1(m2

j )
2p−4

p (m2
j − Tj)

)−β
×

1 +

(
1 + 2

p−2
p C0s1(m2

j )
2p−4

p (m2
j − Tj)

p−2
p

)β
2

p−2
p C0s1(m2

j )
2p−4

p β


≤ C

(
1 +

(
2

p−2
p r̃

2p−4
p

1 C0β

)−1
)
,

where the second inequality follows from the fact that the integrand is a decreasing
function of τ , and the final inequality follows from the fact that r̃1 ≤ s1(m2

j ) by

definition of m2
j . Therefore the third sum of (7.11) is uniformly bounded. This

completes the proof that δn is a summable sequence.
We now prove the estimates involving γk. For n ∈ [n2j , n2j+1 − 1], we have

xn, yn 6∈ U0, where Dgxn
and Dgyn are constant hyperbolic linear transformations.

For these values for n, the maps contract angles uniformly, so there is a γ > 0 for
which γn < γ < 1 for all n. For n ∈

[
m1
j ,m

2
j

]
, we have xn ∈ U1, so applying Lemma

5.6,

m2
j−1∏

n=m1
j

γn ≤
(

1 + C0s2(m1
j )

(2p−4)/p
(
m2
j −m1

j

))−p/(p−2)

≤
(
1 + C

(
m2
j −m1

j

))−p/(p−2)
,

since s2(m1
j ) is uniformly bounded. Because the interval of integers

[
m1
j ,m

2
j

]
dif-

fers from [n2j+1, n2j+2 − 1] by a finite set, and the cardinality of this finite set is
uniformly bounded in j by Lemma 5.1, there is a uniform constant C ′ > 0 for which

n2j+2−1∏
j=n2j+1

γn ≤ C ′
(
1 + C

(
m2
j −m1

j

))−p/(p−2) ≤ C ′.
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In particular,

(7.14)

n2j+2−1∏
n=n2j

γn ≤ C ′γn2j+1−n2j < θ3,

for some constant θ3 > 0. The third estimate of the lemma follows.
To prove the second and final estimate of the lemma, we observe that a similar

estimate to (7.14) may be made with the upper limit replaced with n2j+1 − 1. In
particular, for n2j+1 ≤ n ≤ n2j+2 − 1,

n∏
k=n2j+1

γj ≤ C ′ (1 + C(n− n2j+1))
−p/(p−2)

and
n2j+1−1∏
n=n2j

γn < θ′3

for some θ′3 > 0 that is uniformly bounded. Therefore,

τ(x)∑
n=0

n∏
k=0

γk =

L(x)∑
j=0

n2j+2−1∑
n=n2j

n∏
k=0

γk =

L(x)∑
j=0

n2j−1∏
k=0

γk

n2j+2−1∑
n=n2j

n∏
k=n2j

γk


≤
L(x)∑
j=0

θj3
n2j+1−1∑

n=n2j

n∏
k=n2j

γk +

n2j+1−1∏
k=n2j

γk

n2j+2−1∑
n=n2j+1

n∏
k=n2j+1

γk


≤
L(x)∑
j=0

θj3
n2j+1−1∑

n=n2j

γn−n2j + θ′3

n2j+2−1∑
n2j+1

(1 + C(n− n2j+1))
−p/(p−2)

 .

Because the two sums in the inner parentheses above are both uniformly bounded,
there is a C ′′ > 0 for which

τ(x)∑
n=0

n∏
k=0

γk ≤ C ′′
L(x)∑
j=0

θj3,

which gives us the second estimate in the lemma. �

We continue with the proof of the theorem. Observe thatΞ−1
τ(x) ◦

τ(x)−1∏
n=0

An ◦ Ξ0

 (v) = D
(
gτ(x)

)
x
v ∀ v ∈ TxM,

and P−1
τ(x) ◦ Ξ−1

τ(x) ◦
τ(x)−1∏
n=0

Bn ◦ Ξ0 ◦ P0

 (v) = D
(
gτ(x)

)
y
v ∀ v ∈ TyM.

In particular, since both Ξn and Pn are linear isometries for all n ≥ 0, we have∥∥∥∥∥∥
τ(x)−1∏
n=0

Anv

∥∥∥∥∥∥ =
∥∥∥D (gτ(x)

)
x
v
∥∥∥ ∀ v ∈ TxM,
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and ∥∥∥∥∥∥
τ(x)−1∏
n=0

Bnw

∥∥∥∥∥∥ =

∥∥∥∥D (gτ(x)
)
y
w

∥∥∥∥ ∀ w ∈ TyM,

where v = Ξ0v ∈ R2 and w = (Ξ0 ◦ P0)w ∈ R2. Additionally, for v ∈ TxnM and
w ∈ TynM ,

∠ (Dgxn
v, (Pn+1 ◦Dgyn)w) = ∠ (Anv,Bnw) ,

where here v = Ξnv and w = (Ξn ◦ Pn)w.
Now, suppose v ∈ K+(x) and w ∈ K+(y), and once again denote v = Ξ0v and

w = (Ξ0 ◦ P0)w. Since P0w ∈ K+(x), Lemmas 7.4 and 7.5 yield:

(7.15)

∣∣∣∣∣∣log

∥∥D (gτ(x)
)
x
v
∥∥∥∥∥D (gτ(x)

)
y
w
∥∥∥
∣∣∣∣∣∣ =

∣∣∣∣∣∣log

∥∥∥∏τ(x)−1
n=0 Anv

∥∥∥∥∥∥∏τ(x)−1
n=0 Bnw

∥∥∥
∣∣∣∣∣∣ ≤ CC̃(d(x, y) + ∠ (v, P0w)

)
where we are using the fact that ∠ (v, P0w) = ∠ (v, w). Furthermore, for v ∈ TxM
and w ∈ TyM , the definition of γn and Lemma 7.5 give us:

∠
(
D
(
gτ(x)

)
x
v,
(
Pτ(x) ◦D

(
gτ(x)

)
y

)
w
)

∠(v, P0w)

=

τ(x)−1∏
n=0

∠
(
Dgxn (Dgnxv) , (Pn+1 ◦Dgyn)

(
Dgnyw

))
∠ (Dgnxv, Pn (Dgnnw))

=

τ(x)−1∏
n=0

∠
(
An (Ξn (Dgnxv)) , Bn

(
(Ξn ◦ Pn)

(
Dgnyw

)))
∠
(
Ξn (Dgnxv) , (Ξn ◦ Pn)

(
Dgnyw

))

≤
τ(x)−1∏
n=0

γn ≤ θ2.(7.16)

Denote Ĝ : Λ→ Λ by Ĝ(x) = gτ(x)(x). If vn ∈ Eu
(
Ĝn(x)

)
and wn ∈ Eu

(
Ĝn(y)

)
,

then there are v ∈ Eu(x) and w ∈ Eu(y) such that vn = DĜnxv and wn = DĜnyw.
By (7.15), (7.16), and condition (Y3),∣∣∣∣∣∣log

∥∥∥DĜĜn(x)v
n
∥∥∥∥∥∥DĜĜn(y)w
n
∥∥∥
∣∣∣∣∣∣ ≤ CC̃

(
d

((
gτ(x)

)n
(x),

(
gτ(x)

)n
(y)

)

+ ∠

(
D
(
gτ(x)

)n
x
v, Pτ(x)D

(
gτ(x)

)n
y
w

))
≤ CC̃

(
and(x, y) + θn2∠ (v, P0w)

)
.

Since 0 < a, θ2 < 1, this proves (Y4)(a). �

8. Proof of Theorem 4.1

We now drop our assumption that the pseudo-Anosov diffeomorphism g admits
only one singularity. By Proposition 6.2 and Theorem 7.3, since g : M → M is a
Young’s diffeomorphism, the geometric potential ϕ1(x) = − log

∣∣Dg|Eu(x)

∣∣ admits
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an equilibrium measure, which is the unique g-invariant SRB measure. This is the
same measure as µ1 introduced in Proposition 3.2, as µ1 is absolutely continuous
along the unstable foliations and thus an SRB measure. (This justifies our use of
the notation µ1 to describe this measure).

By Proposition 3.1, the pseudo-Anosov homeomorphism f and the pseudo-
Anosov diffeomorphism g possess the same topological and combinatorial data,
including topological entropy. Thus the number Sn of s-sets Λsi ⊂ Λ with inducing
time τi = n for g is the same for both f and g. Therefore by Lemma 7.2, there is
an h < htop(g) = htop(f) such that Sn ≤ ehn.

Recall that ν is the measure on M given locally by the product of lengths of local
stable and unstable leaves described in Theorem 2.8, and µ1 is the measure given
by the Riemannian metric ζ described in Proposition 3.2. By Theorem 2.8, ν has
a density with respect to µ1, which vanishes at the singularities. By Proposition
10.13 and Lemma 10.22 of [7], hν(f) = htop(f) = log λ, so in fact h < hν(f). Since
ν = µ1 on M \ U0, and µ1(U0) may be made arbitrarily small by shrinking r0 if
necessary, the Pesin entropy formula implies

hµ1(g) =

∫
M

log
∣∣Dg|Eu(x)

∣∣ dµ1(x)

=

∫
M\U0

log λ dν +

∫
U0

log
∣∣Dg|Eu(x)

∣∣ dµ1(x) < hν(f) + ε,(8.1)

where ε > 0 is as small as we need. From this we conclude that h < hµ1
(g). Hence

by Proposition 6.2, there is a t0 < 0 for which for all t ∈ (t0, 1), there is a measure
µt on P that is an equilibrium state for the geometric t-potential ϕt.

Since f is Bernoulli, every power of f is ergodic, so f satisfies the arithmetic
condition. Since f and g are topologically conjugate, this is also true for g.

We now prove (6.3). If x, y ∈ Λsi and y ∈ γs(x), the distance d
(
f j(x)f j(y)

)
decreases with j. On the other hand, if y ∈ γu(x), then d

(
f j(x), f j(y)

)
increases

with j, but is bounded by diamP when j = τ(x). An application of the triangle
inequality and hyperbolic product structure of Λ now yields (6.3). It now follows
that µt has exponential decay of correlations and satisfies the Central Limit Theo-
rem, by Proposition 6.2. Since (M, g, µt) has exponential decay of correlations, this
dynamical system is mixing. By Theorem 2.3 in [19], (M, g, µt) is Bernoulli.

To show r0 may be chosen to accommodate any t0, we show that as r0 → 0,
we may take t0 → −∞. Fix ε > 0, and choose x ∈ Λsi . Recall g = f outside of

Ũ0; in particular, the local stable and unstable leaves are unchanged outside of Ũ0.

Assume x is a generic point for the SRB measure µ1. Let Ũ2 =
⋃m
k=1 φ

−1
k

(
Dr̃1/4

)
,

and write τi as

τi =

s∑
j=1

nj ,

where the integers nj are chosen like so:

• The integer n1 is the first time when gn1(x) ∈ Ũ0 \ Ũ2;

• The integer n2 is the first time after n1 when gn1+n2(x) ∈ Ũ2;

• the number n3 is the first time after n1 + n2 when gn1+n2+n3(x) ∈ Ũ0 \ Ũ2;
• the number n4 is the first time after n1 +n2 +n3 when gn1+n2+n3+n4(x) 6∈
Ũ0;
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and so on. It is possible that some nj may be equal to 0, but this does not change
our calculations. Observe Q ≤ n1, where Q is the number from (7.1). If r0 is
sufficiently small, Q is large enough to ensure that

(8.2) log |Jugn1(x)| ≤ n1(log λ+ ε).

By (7.7), for x ∈ Ũ0 \ Ũ2, we have log |Jug(x)| ≤ logN for some constant N
independent of r0 or of the number of prongs p. Therefore,

(8.3) log |Jugn2(x)| ≤ n2 logN and log |Jugn4(x)| ≤ n4 logN.

For x ∈ Ũ2, if x is in a neighborhood of a singularity with p prongs, Ψp(u) =(
p
2

)(2p−4)/p
u(p−2)/p and Ψ̇p(u) = p−2

p

(
p
2

)(2p−4)/p
u−2/p. By (7.7), for such points

x, log |Jug(x)| ≤ log λ. Therefore,

(8.4) log |Jugn3(x)| ≤ n3 log λ.

Similar estimates hold for the other nj . Observe that

(8.5) log
∣∣∣JuĜ(x)

∣∣∣ ≤ s∑
j=1

log
∣∣Jugn1+···+nj

(
gn1+···+nj−1(x)

)∣∣ .
Similarly to Lemma 5.2, the number of iterates the orbit of x spends in Û0 \ Û2

is bounded above by a constant T ′0 independent of both r0 and p. It follows from
(8.2)-(8.5) and the definition of λ1 in (6.1) that

log λ1 ≤ log λ+ ε+
2T ′0 logN

Q
≤ log λ+ 2ε.

Meanwhile, (8.1) implies that for sufficiently small r0,

(8.6)

∣∣∣∣∫
M

log
∣∣Dg|Eu(x)

∣∣ dµ1(x)− log λ

∣∣∣∣ < ε,

or equivalently,
log λ− ε ≤ hµ1

(g) ≤ log λ+ ε.

Furthermore, one can show log λ1 ≥ hµ1
(g) (see Remark 3 in [15], which is a general

statement about Young diffeomorphisms). Therefore,

log λ− ε ≤ hµ1
(g) ≤ log λ1 ≤ log λ+ 2ε.

It follows that the difference log λ1 − hµ1
(g) can be made arbitrarily small if r0 is

chosen to be sufficiently small. By (6.2), this shows that t0 → −∞ as r0 → 0.
We now show how µt may be extended to a measure on M , as opposed to a

measure only on images of the base of the tower. Suppose we have another element

P̃ of the Markov partition satisfying (7.1). As above, there is a t̃0 = t0(P̃ ) < 0 for

which for every t ∈ (t̃0, 1), there is a unique equilibrium state µ̃t for the geometric

t-potential among all measures µ for which µ(P̃ ) > 0, and µ̃t(U) > 0 for all open

sets Ũ ⊂ P . Since g is topologically conjugate to a Bernoulli shift, g is topologically

transitive. Therefore for any open sets Ũ ⊂ P̃ and U ⊂ P , there is an integer k ≥ 0

for which gk(Ũ)∩U 6= ∅. By invariance of µ̃t and µt under g, it follows that µt = µ̃t.
Consider now an element of the Markov partition that does not satisfy (7.1). If r0

is sufficiently small, the union of all partition elements satisfying (7.1) form a closed
set Z ⊂ M , whose complement is a neighborhood of the singular set S with each
component containing a single singularity. If ω is a g-invariant probability measure
that does not give weight to partition elements in Z, then ω is a convex combination
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of the δ-measures concentrated at the singularities. If P is our partition element in
the proof of Theorem 7.3, we observe ω(P ) = 0, so ω is clearly out of consideration
as an equilibrium measure for ϕt. So any equilibrium measure for (M, g) must
charge partition elements in Z. Therefore, set

t0 = max
P∈P, P∩Z 6=∅

t0(P ).

Since t0 → −∞ as r0 → 0 and µt(P ) > 0 for t0 < t < 1, this t0 suffices for the first
statement of Theorem 4.1.

To prove Statement 2 of Theorem 4.1, suppose ω is an invariant ergodic Borel
probability measure. By the Margulis-Ruelle inequality,

hω(g) ≤
∫
M

log
∣∣Dg|Eu(x)

∣∣ dω(x) = −
∫
M

ϕ1 dω.

Hence hω(f) +
∫
ϕ1 dω ≤ 0. If ω has only 0 as a nonnegative Lyapunov expo-

nent almost everywhere, then log
∣∣Dg|Eu(x)

∣∣ = 0 ω-a.e. The only point at which

log
∣∣Dg|Eu(x)

∣∣ = 0 is at the singularities of g, so ω is a convex combination of the

δ-measures at the singularities. In this instance, we have hω(g) +
∫
ϕ1 dω = 0, so

P (ϕ1) = 0, and ω is an equilibrium state for ϕ1.
On the other hand, part 1 of Proposition 6.2 guarantees the existence of an SRB

measure µ1 for g. In particular, µ1 is a smooth measure, so by the Pesin entropy
formula, hµ(f) +

∫
ϕ1 dµ = 0, so µ is also an equilibrium measure. Any other

equilibrium measure with positive Lyapunov exponents also satisfies the entropy
formula. By [12], such a measure is also an SRB measure, and by [18], this SRB
measure is unique. This proves Statement 2.

Finally, to prove Statement 3 of Theorem 4.1, fix t > 1, and let ω be an ergodic
measure for g. Again, by the Margulis-Ruelle inequality,

hω(g) ≤ t
∫

log
∣∣Dg|Eu(x)

∣∣ dω,
with equality if and only if

∫
log
∣∣Dg|Eu(x)

∣∣ dω = 0. In particular, we have equality
if and only if ω has zero Lyapunov exponents ω-a.e. As we saw, the only measures
satisfying this are convex combinations of δ-measures at singularities, so hω(g) +∫
ϕt dω ≤ 0, with equality only for ω =

∑
λiδxi

, with
∑
λi = 1. Hence the only

equilibrium states for ϕt with t > 1 are convex combinations of δ-measures at
singularities.
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15(4):173-204, 1982.
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