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1 Preliminaries

1.1 Thurston’s Classification

Thurston showed that all diffeomorphisms f : T2 → T2 of the two-dimensional torus ae isotopic to one of
the following toral automorphisms A ∈ SL(2,Z):

• A has distinct (conjugate) complex eigenvalues (λ1 = λ2, |λi| = 1), and A is of finite order;

• A has repeated eigenvalues of 1 or −1, respectively resulting (after a change of coordinates) in one of
the following Dehn twists:

A =

(
1 a
0 1

)
or A =

(
−1 a
0 −1

)
• A has distinct irrational eigenvalues whose product is 1, making A an Anosov diffeomorphism.

This classification of toral diffeomorphisms can be extended to compact manifolds like so:

Theorem 1 (Nielson-Thurston Classification). Any diffeomorphism g of a compact surface M is isotopic
to a map f : M →M satisfying one of the following properties:

• f is of finite order (that is, fn = id for some n ≥ 1);

• f is reducible, leaving invariant a closed curve;

• f is pseudo-Anosov.

As with many classification theorems in geometry and analysis, one can think of these results respectively
as being “elliptic” (stable), “parabolic”, and “hyperbolic”.

1.2 Uniformly Hyperbolic Systems

Definition 1. Let U ⊂ M be open so that f : U → f(U) is a diffeomorphism. A compact f -invariant set
Λ ⊂ U is a hyperbolic set if there is a λ ∈ (0, 1), C > 0, and a splitting TxM = Es(x) ⊕ Eu(x) at each
tangent plane for x ∈ Λ so that:

1. ‖Dfnx v‖ ≤ Cλn ‖v‖ for every v ∈ Es(x), n ≥ 0;

2. ‖Df−nx v‖ ≤ Cλn ‖v‖ for every v ∈ Eu(x), n ≥ 0;

3. Dfx (Es(x)) = Es(f(x)) and Dfx (Eu(x)) = Eu(f(x)).

If U = M , then f : M →M is an Anosov diffeomorphism.

NOTE: Hyperbolic sets are common. Anosov diffeomorphisms are not.

Definition 2. Let N be a nilpotent simply connected real Lie group, and let Γ ⊆ N be a closed subgroup.
Then the quotient manifold M = N/Γ is a nilmanifold.

Let F be a finite set of automorphisms, and define the semidirect product N o F . An orbit space of N
by a discrete subgroup of N o F acting freely on N is a infranilmanifold.

All known Anosov systems are (up to conjugation with a homeomorphism) either:

• hyperbolic matrices in SL(n,Z) acting on Tn; or

• induced systems on nilmanifolds (quotiented over discrete subgroups Γ) or infranilmanifolds.
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Theorem 2. The only 2-manifold admitting an Anosov diffeomorphism is T2.

Conjecture 1. All Anosov diffeomorphisms f : M → M are topologically transitive: there exists a dense
orbit of f , or equivalently (on a manifold), there are open U, V ⊆ M such that fn(U) ∩ V 6= ∅ for some
n ∈ N.

Example 1 (Cat map). Let A =

(
2 1
1 1

)
∈ SL(2,Z), which has eigenvalues 0 < λ−1 < 1 < λ. Then A

induces a map f on T2 = R2/Z2.

Theorem 3. If f : M → M is an Anosov diffeomorphism, then M has two transverse foliations Fs =
{W s(x)}, Fu = {Wu(x)} so that for x ∈M ,

• W s(x) =
{
y ∈M : d (fn(x), fn(y))

n→∞−−−−→ 0
}

;

• Wu(x) =
{
y ∈M : d (f−n(x), f−n(y))

n→−∞−−−−−→ 0
}

;

• TxW s(x) = Es(x) and TxW
u(x) = Eu(x);

• f (W s(x)) = W s(f(x)) and f (Wu(x)) = Wu(f(x)).

For M = T2, these stable and unstable manifolds are the affine eigenspaces of the hyperbolic toral automor-
phism A ∈ SL(2,Z).

For ε > 0, the local stable/unstable submanifolds at a point x ∈M are:

W s
ε (x) := {y ∈M : d (fn(x), fn(y)) ≤ ε ∀n ≥ 0}

and
Wu
ε (x) :=

{
y ∈M : d

(
f−n(x), f−n(y)

)
≤ ε ∀n ≥ 0

}
And,

W s(x) =
⋃
n≥0

W s
ε (fn(x)) and Wu(x) =

⋃
n≥0

Wu
ε (f−n(x)).

Theorem 4 (Local product structure). There is ε0, δ0 > 0 such that if x, y ∈ M have d(x, y) < δ0, then
[x, y] := W s(x) ∩Wu(y) consists of a single point.

Given a finite (or countable) alphabet of symbols {R1, . . . , Rn}, the symbolic shift space is the dy-
namical system (Ωn, σ), where ΩR = {R1, . . . , Rn}Z (with the product topology of discrete topologies) and
σ(ω) = σ (ωi)i≥0 = (ωi+1≥0)i≥0. A subshift of finite type is a σ-invariant closed subset ΩA of ΩR.

Definition 3. A Markov partition of a smooth dynamical system f : M → M is a collection of disjoint
open sets {R1, . . . , Rn}, called “rectangles”, so that:

• µ (
⋃n
i=1Ri) = µ(M), where µ is the Riemannian volume of M ;

• There is a subshift of finite type ΩA of ΩR such that, for any ω ∈ ΩR (with ωi = Rki for each i), the
intersection

⋂∞
i=−∞ f−i (Rki) is a single point x = π(ω), and the map π : ΩA →M is a semiconjugacy:

π ◦ σ = f ◦ π.

In this sense, a Markov partition allows us to analyze our smooth system as a symbolic system almost
everywhere.

For Anosov systems or systems with local product structure, the rectangles are formed so the edges are
leaves of these stable and unstable foliations.

Theorem 5. Anosov systems f : M →M admit Markov partitions of arbitrarily small diameter.
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2 Measured Foliations

Definition 4. A measured foliation with singularities is a triple (F , S, ν), where:

• S = {x1, . . . , xm} is a finite set of points in M , called singularities;

• F = F̃ ] S is a singular foliation of M , where F̃ is a collection of C∞ curves and S is a partition of S
into points;

• ν is a transverse measure; in other words, ν is a measure defined on each curve on M transverse to the
leaves of F̃ ;

and the triple satisfies the following properties:

1. There is a finite atlas of C∞ charts ϕk : Uk → C for k = 1, . . . , `, ` ≥ m.

2. For each k = 1, . . . ,m, there is a number p = p(k) ≥ 2 of elements of F meeting at xk (these elements
are called prongs of xk) such that:

(a) ϕk(xk) = 0 and ϕk(Uk) = Dak := {z ∈ C : |z| ≤ ak} for some ak > 0;

(b) if C ∈ F̃ , then the components of C ∩ Uk are mapped by ϕk to sets of the form{
z ∈ C : Im

(
zp/2

)
= constant

}
∩ ϕk(Uk);

(c) the measure ν|Uk is the pullback under ϕk of∣∣∣Im(dzp/2)∣∣∣ =
∣∣∣Im(z(p−2)/2dz

)∣∣∣ .
3. For each k > m, we have:

(a) ϕk(Uk) = (0, bk)× (0, ck) ⊂ R2 ≈ C for some bk, ck > 0;

(b) If C ∈ F̃ , then components of C ∩ Uk are mapped by ϕk to lines of the form

{z ∈ C : Im z = constant} ∩ ϕk(Uk).

(c) The measure ν|Uk is given by the pullback of |Im dz| under ϕk.

Remark 1. Properties (2) and (3) in the above definition ensure that ν is holonomy-invariant. In particular,
if γ and γ′ are isotopic curves in M \ S, and the initial and terminal points in γ and γ′ lie in the same leaf

of F̃ , then ν(γ) = ν(γ′).

Definition 5. A surface homeomorphism f of a manifold M is pseudo-Anosov if there are measured singular
foliations (Fs, S, νs) and (Fu, S, νu) (with the same finite set of singularities S = {x1, . . . , xm}) and an atlas
of C∞ charts ϕk : Uk → C for k = 1, . . . , `, ` > m, satisfying the following properties:

1. f is differentiable, except on S.

2. There are two measured singular foliations (Fs, S, νs) and (Fu, S, νu), which share the same singular
set S on which f is not differentiable, and for each xk ∈ S, Fs and Fu have the same number p(k) of
prongs at xk.

3. The leaves of Fs and Fu intersect transversally at nonsingular points;

4. both singular foliations Fs and Fu are f -invariant;

5. There is a constant λ > 1 such that

f(Fs, νs) = (Fs, νs/λ) and f(Fu, νu) = (Fu, λνu);
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6. For each k = 1, . . . ,m, we call Uk a singular neighborhood, where we have:

(a) ϕk(xk) = 0 and ϕk(Uk) = Dak for some ak > 0;

(b) if C is a curve leaf in Fs, then the components of C ∩ Uk are mapped by ϕk to sets of the form{
z ∈ C : Re

(
zp/2

)
= constant

}
∩Dak ;

(c) if C is a curve leaf in Fu, then the components of C ∩ Uk are mapped by ϕk to sets of the form{
z ∈ C : Im

(
zp/2

)
= constant

}
∩Dak ;

(d) the measures νs|Uk and νu|Uk are given by the pullbacks of∣∣∣Re
(
dzp/2

)∣∣∣ =
∣∣∣Re

(
z(p−2)/2dx

)∣∣∣
and ∣∣∣Im(dzp/2)∣∣∣ =

∣∣∣Im(z(p−2)/2dx
)∣∣∣

under ϕk, respectively.

7. For each k > m, we call Uk a regular neighborhood, where we have:

(a) ϕk(Uk) = (0, bk)× (0, ck) ⊂ R2 ≈ C for some bk, ck > 0;

(b) If C is a curve leaf in Fs, then components of C ∩ Uk are mapped by ϕk to lines of the form

{z ∈ C : Re z = constant} ∩ ϕk(Uk);

(c) If C is a curve leaf in Fu, then components of C ∩ Uk are mapped by ϕk to lines of the form

{z ∈ C : Im z = constant} ∩ ϕk(Uk);

(d) the measures νs|Uk and νu|Uk are given by the pullbacks of |Re dz| and |Im dz| under ϕk, respec-
tively.

Proposition 1. A pseudo-Anosov homeomorphism f : M → M is smooth except at its singularities. For
x ∈ M \ S, TxM = TxFs(x)⊕ TxFu(x), and in these coordinates, Dfx(ξs, ξu) = (ξs/λ, λξu), where ξs and
ξu are nonzero vectors in TxFs(x) and TxFu(x), Fs(x) and Fu(x) represent the curve containing x in the
respective foliation, and λ is the dilation factor for f .

Proposition 2. A pseudo-Anosov surface homeomorphism f : M → M preserves a smooth invariant
probability measure ν defined locally as the product of νs on Fu-leaves with νu on Fs-leaves. This probability
measure ν has a density with respect to Lebesgue measure m, which vanishes at singularities.

Proposition 3. Every pseudo-Anosov homeomorphism of a surface M admits a finite Markov partition of
arbitrarily small diameter. Conjugated to the symbolic system induced by this Markov partition, with the
measure ν as in the preceding proposition, (M,f, ν) is the full Bernoulli shift (i.e. is maximally chaotic).

I want to emphasize that these are more powerful in a sense than Anosov systems in that they are defined
on essentially any manifold in some capacity. However, by first Thurston classification, all hyperbolic maps
of the torus (i.e. pseudo-Anosov candidates) are regular Anosov diffeomorphisms.

Construction: One can construct pseudo-Anosov systems by taking a linear map of the torus and lifting
it to a map on a covering space. But like Anosov systems, pseudo-Anosov systems are hard to construct
explicitly.
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3 Smooth Realizations

Let p = p(x0), and let ϕ0 : U0 → C be the chart described in part (6) of definition (5). The stable and
unstable prongs at x0 are the leaves P sj and Puj , j = 0, . . . , p−1 of Fs and Fu, respectively, whose endpoints
meet at x0. Locally, they are given by:

P sj = ϕ−1
0

{
ρeiτ : 0 ≤ ρ < a0, τ =

2j + 1

p
π

}
,

and Puj = ϕ−1
0

{
ρeiτ : 0 ≤ ρ < a0, τ =

2j

p
π

}
.

For simplicity, assume f(P sj ) ⊆ P sj for all j = 1, . . . , p. Furthermore, we define the stable and unstable
sectors at x0 to be the regions in U0 bounded by the stable (resp. unstable) prongs:

Ssj = ϕ−1
0

{
ρeiτ : 0 ≤ ρ < a0,

2j − 1

p
π ≤ τ ≤ 2j + 1

p
π

}
,

and Suj = ϕ−1
0

{
ρeiτ : 0 ≤ ρ < a0,

2j

p
π ≤ τ ≤ 2j + 2

p
π

}
.

The strategy for creating our diffeomorphism g is adapted from section 6.4.2 of [?]. In each stable sector,
we apply a “slow-down” of the trajectories, followed by a change of coordinates ensuring the resulting
diffeomorphism g preserves the measure induced by a convenient Riemannian metric.

Let F : C→ C be the map s1 + is2 7→ λs1 + is2/λ. Note F is the time-1 map of the vector field V given
by

ṡ1 = (log λ)s1, ṡ2 = −(log λ)s2.

Let 0 < r1 < r0 < a0, and define r̃0 and r̃1 by r̃j = (2/p)r
p/2
j for j = 0, 1. Define a “slow-down” function Ψp

for the p-pronged singularity on the interval [0,∞) so that:

(1) Ψp(u) = (p/2)(2p−4)/pu(p−2)/p for u ≤ r̃2
1;

(2) Ψp is C∞ except at 0;

(3) Ψ′p(u) ≥ 0 for u > 0;

(4) Ψp(u) = 1 for u ≥ r̃2
0.

Consider the vector field VΨp
defined by

ṡ1 = (log λ)s1Ψp

(
s2

1 + s2
2

)
and ṡ2 = −(log λ)s2Ψp

(
s2

1 + s2
2

)
.

Let Gp be the time-1 map of the vector field VΨp
. Assume r1 is chosen to be small enough so that Gp = F on

a neighborhood of the boundary of Dr̃0 , and assume r0 is chosen to be small enough so that Dr0 is disjoint
from the other open sets in the atlas defined in Definition 5 parts (6) and (7).

Let ã0 = (2/p)a
p/2
0 , and define the coordinate change Φj : ϕ0S

s
j → {z : Rez ≥ 0} ∩Dã0 by

Φj(z) = (2/p)zp/2 = w = s1 + is2.

Define g : M →M by g(x) = f(x) outside Dr0 , and meanwhile define g on each sector Ssj by

g(x) = ϕ−1
0 Φ−1

j GpΦjϕ0(x).

Theorem 6. The function g defined above is well-defined on the unstable prongs and singularity. It is in
fact a diffeomorphism topologically conjugate to f , and for any ε > 0, r0 and r1 can be chosen so that
‖f − g‖C0 < ε. In particular, g admits a Markov partition of arbitrarily small diameter.
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Next we define a Riemannian metric ζ = 〈·, ·〉 on M \ {x0} with respect to which the map g is area-
preserving. In the stable sector Ssj ∩ ϕ

−1
0 (Dã0), we consider the coordinates w = s1 + is2 given by Φj ◦ ϕ0

defined above. Outside of this neighborhood, we use the coordinates z = s1 +is2. In both sets of coordinates,
the stable and unstable transversal measures are νs = |ds1| and νu = |ds2|. On stable sectors in M \ {x0},
we define the Riemannian metric ζ to be the pullback of

(
ds2

1 + ds2
2

)
/Ψ
(
s2

1 + s2
2

)
under Φj ◦ ϕ0. In regular

neighborhoods (Uk, ϕk), we define ζ = ϕ∗k
(
ds2

1 + ds2
2

)
. Since r̃0 is chosen so that ϕ−1

0 (Dr̃0) is disjoint from
regular neighborhoods, and Ψ(u) ≡ 1 for u ≥ r̃2

0, ζ is consistently defined on chart overlaps. One can further
show that ζ agrees with the Euclidean metric in ϕ−1

0 (Dr̃0). So ζ can be extended to a Riemannian metric
on M .

Theorem 7. The diffeomorphism g : M → M is area preserving with respect to the Riemannian metric ζ
defined above.

4 Thermodynamics

My main research objective is to effect thermodynamic formalism. Given a probability measure µ on a
compact manifold M with a µ-preserving map f : M →M , the entropy of the map is hµ(f).

Without getting into details, hµ(f) is the amount of “randomness” in the system in the following sense:
suppose ϕ : M → R is continuous. We can think of ϕ as a random variable (an observable) on the probability
space (M,µ). Then Xn := ϕ ◦ fn is a stochastic process, and greater entropy leads to more scattered or
“chaotic” values of Xn as n→∞.

We often have a potential function ϕ : M → R. In principle, this potential function can be any contin-
uous function. But the potential function I’m most interested in is ϕt(x) = −t log

∣∣df |Eu(x)

∣∣. This is the
geometric potential : it’s the potential function of interest for a dynamical system, since it shows how expan-
sive the dynamics are.

For example, for pseudo-Anosov homeomorphisms,
∣∣df |Eu(x)

∣∣ = λ > 1 for every x ∈ M \ S, so ϕt(x) ≡
−t log λ.

But the geometric potential is a little bit more subtle for globally smooth pseudo-Anosov models, in that it
vanishes at the singularities but may fail to be Hölder continuous there.

In general, we are interested in measures µ that maximize the quantity

hµ(f) +

∫
M

ϕdµ.

In a sense, the integral of the potential represents the “total energy” the system possesses with that potential
energy field (strictly speaking times a negative constant, which we usually absorb into ϕ). So optimizing this
quantity is a mathematical formalization of the thermodynamic principle that nature “maximizes entropy
and minimizes energy”.
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