Dynamical Properties of Pseudo-Anosov Maps Student-Directed Colloquium

1 Preliminaries

1.1 Thurston's Classification

Thurston showed that all diffeomorphisms $f : \mathbb{T}^2 \to \mathbb{T}^2$ of the two-dimensional torus are isotopic to one of the following toral automorphisms $A \in \mathrm{SL}(2,\mathbb{Z})$:

- A has distinct (conjugate) complex eigenvalues $(\lambda_1 = \overline{\lambda}_2, |\lambda_i| = 1)$, and A is of finite order;
- A has repeated eigenvalues of 1 or -1, respectively resulting (after a change of coordinates) in one of the following *Dehn twists*:

$$A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \quad \text{or} \quad A = \begin{pmatrix} -1 & a \\ 0 & -1 \end{pmatrix}$$

• A has distinct irrational eigenvalues whose product is 1, making A an Anosov diffeomorphism.

This classification of toral diffeomorphisms can be extended to compact manifolds like so:

Theorem 1 (Nielson-Thurston Classification). Any diffeomorphism g of a compact surface M is isotopic to a map $f: M \to M$ satisfying one of the following properties:

- f is of finite order (that is, $f^n = id$ for some $n \ge 1$);
- f is <u>reducible</u>, leaving invariant a closed curve;
- f is pseudo-Anosov.

As with many classification theorems in geometry and analysis, one can think of these results respectively as being "elliptic" (stable), "parabolic", and "hyperbolic".

1.2 Uniformly Hyperbolic Systems

Definition 1. Let $U \subset M$ be open so that $f: U \to f(U)$ is a diffeomorphism. A compact f-invariant set $\Lambda \subset U$ is a **hyperbolic set** if there is a $\lambda \in (0,1), C > 0$, and a splitting $T_x M = E^s(x) \oplus E^u(x)$ at each tangent plane for $x \in \Lambda$ so that:

- 1. $||Df_x^n v|| \le C\lambda^n ||v||$ for every $v \in E^s(x), n \ge 0;$
- 2. $||Df_x^{-n}v|| \le C\lambda^n ||v||$ for every $v \in E^u(x), n \ge 0;$
- 3. $Df_x(E^s(x)) = E^s(f(x))$ and $Df_x(E^u(x)) = E^u(f(x))$.

If U = M, then $f : M \to M$ is an **Anosov diffeomorphism**.

NOTE: Hyperbolic sets are common. Anosov diffeomorphisms are not.

Definition 2. Let N be a nilpotent simply connected real Lie group, and let $\Gamma \subseteq N$ be a closed subgroup. Then the quotient manifold $M = N/\Gamma$ is a **nilmanifold**.

Let F be a finite set of automorphisms, and define the semidirect product $N \rtimes F$. An orbit space of N by a discrete subgroup of $N \rtimes F$ acting freely on N is a **infranilmanifold**.

All known Anosov systems are (up to conjugation with a homeomorphism) either:

- hyperbolic matrices in $SL(n, \mathbb{Z})$ acting on \mathbb{T}^n ; or
- induced systems on nilmanifolds (quotiented over *discrete* subgroups Γ) or infranilmanifolds.

Theorem 2. The only 2-manifold admitting an Anosov diffeomorphism is \mathbb{T}^2 .

Conjecture 1. All Anosov diffeomorphisms $f : M \to M$ are topologically transitive: there exists a dense orbit of f, or equivalently (on a manifold), there are open $U, V \subseteq M$ such that $f^n(U) \cap V \neq \emptyset$ for some $n \in \mathbb{N}$.

Example 1 (Cat map). Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \in SL(2, \mathbb{Z})$, which has eigenvalues $0 < \lambda^{-1} < 1 < \lambda$. Then A induces a map f on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$.

Theorem 3. If $f: M \to M$ is an Anosov diffeomorphism, then M has two transverse foliations $\mathcal{F}^s = \{W^s(x)\}, \mathcal{F}^u = \{W^u(x)\}$ so that for $x \in M$,

 $\bullet \ W^s(x) = \Big\{ y \in M : d\left(f^n(x), f^n(y)\right) \xrightarrow{n \to \infty} 0 \Big\};$

•
$$W^u(x) = \left\{ y \in M : d\left(f^{-n}(x), f^{-n}(y)\right) \xrightarrow{n \to -\infty} 0 \right\};$$

- $T_x W^s(x) = E^s(x)$ and $T_x W^u(x) = E^u(x);$
- $f(W^s(x)) = W^s(f(x))$ and $f(W^u(x)) = W^u(f(x))$.

For $M = \mathbb{T}^2$, these *stable* and *unstable* manifolds are the affine eigenspaces of the hyperbolic toral automorphism $A \in SL(2, \mathbb{Z})$.

For $\varepsilon > 0$, the local stable/unstable submanifolds at a point $x \in M$ are:

$$W^s_{\varepsilon}(x) := \{ y \in M : d\left(f^n(x), f^n(y)\right) \le \varepsilon \, \forall n \ge 0 \}$$

and

$$W^u_{\varepsilon}(x) := \left\{ y \in M : d\left(f^{-n}(x), f^{-n}(y)\right) \le \varepsilon \, \forall n \ge 0 \right\}$$

And,

$$W^s(x) = \bigcup_{n \ge 0} W^s_{\varepsilon}(f^n(x)) \text{ and } W^u(x) = \bigcup_{n \ge 0} W^u_{\varepsilon}(f^{-n}(x)).$$

Theorem 4 (Local product structure). There is $\varepsilon_0, \delta_0 > 0$ such that if $x, y \in M$ have $d(x, y) < \delta_0$, then $[x, y] := W^s(x) \cap W^u(y)$ consists of a single point.

Given a finite (or countable) alphabet of symbols $\{R_1, \ldots, R_n\}$, the **symbolic shift space** is the dynamical system (Ω_n, σ) , where $\Omega_R = \{R_1, \ldots, R_n\}^{\mathbb{Z}}$ (with the product topology of discrete topologies) and $\sigma(\omega) = \sigma(\omega_i)_{i>0} = (\omega_{i+1\geq 0})_{i>0}$. A **subshift of finite type** is a σ -invariant closed subset Ω_A of Ω_R .

Definition 3. A Markov partition of a smooth dynamical system $f: M \to M$ is a collection of disjoint open sets $\{R_1, \ldots, R_n\}$, called "rectangles", so that:

- $\mu(\bigcup_{i=1}^{n} R_i) = \mu(M)$, where μ is the Riemannian volume of M;
- There is a subshift of finite type Ω_A of Ω_R such that, for any $\omega \in \Omega_R$ (with $\omega_i = R_{k_i}$ for each *i*), the intersection $\bigcap_{i=-\infty}^{\infty} f^{-i}(R_{k_i})$ is a single point $x = \pi(\omega)$, and the map $\pi : \Omega_A \to M$ is a semiconjugacy: $\pi \circ \sigma = f \circ \pi$.

In this sense, a Markov partition allows us to analyze our smooth system as a symbolic system almost everywhere.

For Anosov systems or systems with local product structure, the rectangles are formed so the edges are leaves of these stable and unstable foliations.

Theorem 5. Anosov systems $f: M \to M$ admit Markov partitions of arbitrarily small diameter.

2 Measured Foliations

Definition 4. A measured foliation with singularities is a triple (\mathcal{F}, S, ν) , where:

- $S = \{x_1, \ldots, x_m\}$ is a finite set of points in M, called *singularities*;
- $\mathcal{F} = \widetilde{\mathcal{F}} \uplus \mathcal{S}$ is a singular foliation of M, where $\widetilde{\mathcal{F}}$ is a collection of C^{∞} curves and \mathcal{S} is a partition of S into points;
- ν is a *transverse measure*; in other words, ν is a measure defined on each curve on M transverse to the leaves of $\widetilde{\mathcal{F}}$;

and the triple satisfies the following properties:

- 1. There is a finite atlas of C^{∞} charts $\varphi_k : U_k \to \mathbb{C}$ for $k = 1, \ldots, \ell, \ell \geq m$.
- 2. For each k = 1, ..., m, there is a number $p = p(k) \ge 2$ of elements of \mathcal{F} meeting at x_k (these elements are called *prongs* of x_k) such that:
 - (a) $\varphi_k(x_k) = 0$ and $\varphi_k(U_k) = D_{a_k} := \{z \in \mathbb{C} : |z| \le a_k\}$ for some $a_k > 0$;
 - (b) if $C \in \widetilde{\mathcal{F}}$, then the components of $C \cap U_k$ are mapped by φ_k to sets of the form

$$\left\{z \in \mathbb{C} : \operatorname{Im}\left(z^{p/2}\right) = \operatorname{constant}\right\} \cap \varphi_k(U_k);$$

(c) the measure $\nu | U_k$ is the pullback under φ_k of

$$\left|\operatorname{Im}\left(dz^{p/2}\right)\right| = \left|\operatorname{Im}\left(z^{(p-2)/2}dz\right)\right|.$$

- 3. For each k > m, we have:
 - (a) $\varphi_k(U_k) = (0, b_k) \times (0, c_k) \subset \mathbb{R}^2 \approx \mathbb{C}$ for some $b_k, c_k > 0$;
 - (b) If $C \in \widetilde{\mathcal{F}}$, then components of $C \cap U_k$ are mapped by φ_k to lines of the form

$$\{z \in \mathbb{C} : \operatorname{Im} z = \operatorname{constant}\} \cap \varphi_k(U_k)$$

(c) The measure $\nu | U_k$ is given by the pullback of |Im dz| under φ_k .

Remark 1. Properties (2) and (3) in the above definition ensure that ν is holonomy-invariant. In particular, if γ and γ' are isotopic curves in $M \setminus S$, and the initial and terminal points in γ and γ' lie in the same leaf of $\widetilde{\mathcal{F}}$, then $\nu(\gamma) = \nu(\gamma')$.

Definition 5. A surface homeomorphism f of a manifold M is *pseudo-Anosov* if there are measured singular foliations $(\mathcal{F}^s, S, \nu^s)$ and $(\mathcal{F}^u, S, \nu^u)$ (with the same finite set of singularities $S = \{x_1, \ldots, x_m\}$) and an atlas of C^{∞} charts $\varphi_k : U_k \to \mathbb{C}$ for $k = 1, \ldots, \ell, \ell > m$, satisfying the following properties:

- 1. f is differentiable, except on S.
- 2. There are two measured singular foliations $(\mathcal{F}^s, S, \nu^s)$ and $(\mathcal{F}^u, S, \nu^u)$, which share the same singular set S on which f is not differentiable, and for each $x_k \in S$, \mathcal{F}^s and \mathcal{F}^u have the same number p(k) of prongs at x_k .
- 3. The leaves of \mathcal{F}^s and \mathcal{F}^u intersect transversally at nonsingular points;
- 4. both singular foliations \mathcal{F}^s and \mathcal{F}^u are *f*-invariant;
- 5. There is a constant $\lambda > 1$ such that

$$f(\mathcal{F}^s,\nu^s)=(\mathcal{F}^s,\nu^s/\lambda) \quad \text{and} \quad f(\mathcal{F}^u,\nu^u)=(\mathcal{F}^u,\lambda\nu^u);$$

- 6. For each k = 1, ..., m, we call U_k a singular neighborhood, where we have:
 - (a) $\varphi_k(x_k) = 0$ and $\varphi_k(U_k) = D_{a_k}$ for some $a_k > 0$;
 - (b) if C is a curve leaf in \mathcal{F}^s , then the components of $C \cap U_k$ are mapped by φ_k to sets of the form

$$\left\{z \in \mathbb{C} : \operatorname{Re}\left(z^{p/2}\right) = \operatorname{constant}\right\} \cap D_{a_k};$$

(c) if C is a curve leaf in \mathcal{F}^u , then the components of $C \cap U_k$ are mapped by φ_k to sets of the form

$$\left\{z \in \mathbb{C} : \operatorname{Im}\left(z^{p/2}\right) = \operatorname{constant}\right\} \cap D_{a_k};$$

(d) the measures $\nu^s | U_k$ and $\nu^u | U_k$ are given by the pullbacks of

$$\left|\operatorname{Re}\left(dz^{p/2}\right)\right| = \left|\operatorname{Re}\left(z^{(p-2)/2}dx\right)\right|$$
$$\left|\operatorname{Im}\left(dz^{p/2}\right)\right| = \left|\operatorname{Im}\left(z^{(p-2)/2}dx\right)\right|$$

under φ_k , respectively.

and

- 7. For each k > m, we call U_k a regular neighborhood, where we have:
 - (a) $\varphi_k(U_k) = (0, b_k) \times (0, c_k) \subset \mathbb{R}^2 \approx \mathbb{C}$ for some $b_k, c_k > 0$;
 - (b) If C is a curve leaf in \mathcal{F}^s , then components of $C \cap U_k$ are mapped by φ_k to lines of the form

$$\{z \in \mathbb{C} : \operatorname{Re} z = \operatorname{constant}\} \cap \varphi_k(U_k);$$

(c) If C is a curve leaf in \mathcal{F}^u , then components of $C \cap U_k$ are mapped by φ_k to lines of the form

$$\{z \in \mathbb{C} : \operatorname{Im} z = \operatorname{constant}\} \cap \varphi_k(U_k);$$

(d) the measures $\nu^s | U_k$ and $\nu^u | U_k$ are given by the pullbacks of $|\operatorname{Re} dz|$ and $|\operatorname{Im} dz|$ under φ_k , respectively.

Proposition 1. A pseudo-Anosov homeomorphism $f: M \to M$ is smooth except at its singularities. For $x \in M \setminus S$, $T_x M = T_x \mathcal{F}^s(x) \oplus T_x \mathcal{F}^u(x)$, and in these coordinates, $Df_x(\xi^s, \xi^u) = (\xi^s / \lambda, \lambda \xi^u)$, where ξ^s and ξ^u are nonzero vectors in $T_x \mathcal{F}^s(x)$ and $T_x \mathcal{F}^u(x)$, $\mathcal{F}^s(x)$ and $\mathcal{F}^u(x)$ represent the curve containing x in the respective foliation, and λ is the dilation factor for f.

Proposition 2. A pseudo-Anosov surface homeomorphism $f : M \to M$ preserves a smooth invariant probability measure ν defined locally as the product of ν^s on \mathcal{F}^u -leaves with ν^u on \mathcal{F}^s -leaves. This probability measure ν has a density with respect to Lebesgue measure m, which vanishes at singularities.

Proposition 3. Every pseudo-Anosov homeomorphism of a surface M admits a finite Markov partition of arbitrarily small diameter. Conjugated to the symbolic system induced by this Markov partition, with the measure ν as in the preceding proposition, (M, f, ν) is the full Bernoulli shift (i.e. is maximally chaotic).

I want to emphasize that these are more powerful in a sense than Anosov systems in that they are defined on essentially any manifold in some capacity. However, by first Thurston classification, all hyperbolic maps of the torus (i.e. pseudo-Anosov candidates) are regular Anosov diffeomorphisms.

<u>Construction</u>: One can construct pseudo-Anosov systems by taking a linear map of the torus and lifting it to a map on a covering space. But like Anosov systems, pseudo-Anosov systems are hard to construct explicitly.

3 Smooth Realizations

Let $p = p(x_0)$, and let $\varphi_0 : U_0 \to \mathbb{C}$ be the chart described in part (6) of definition (5). The *stable* and *unstable prongs* at x_0 are the leaves P_j^s and P_j^u , $j = 0, \ldots, p-1$ of \mathcal{F}^s and \mathcal{F}^u , respectively, whose endpoints meet at x_0 . Locally, they are given by:

$$\begin{split} P_j^s &= \varphi_0^{-1} \left\{ \rho e^{i\tau} : 0 \le \rho < a_0, \ \tau = \frac{2j+1}{p} \pi \right\},\\ \text{and} \quad P_j^u &= \varphi_0^{-1} \left\{ \rho e^{i\tau} : 0 \le \rho < a_0, \ \tau = \frac{2j}{p} \pi \right\}. \end{split}$$

For simplicity, assume $f(P_j^s) \subseteq P_j^s$ for all j = 1, ..., p. Furthermore, we define the *stable* and *unstable* sectors at x_0 to be the regions in U_0 bounded by the stable (resp. unstable) prongs:

$$S_j^s = \varphi_0^{-1} \left\{ \rho e^{i\tau} : 0 \le \rho < a_0, \ \frac{2j-1}{p}\pi \le \tau \le \frac{2j+1}{p}\pi \right\},$$

and $S_j^u = \varphi_0^{-1} \left\{ \rho e^{i\tau} : 0 \le \rho < a_0, \ \frac{2j}{p}\pi \le \tau \le \frac{2j+2}{p}\pi \right\}.$

The strategy for creating our diffeomorphism g is adapted from section 6.4.2 of [?]. In each stable sector, we apply a "slow-down" of the trajectories, followed by a change of coordinates ensuring the resulting diffeomorphism g preserves the measure induced by a convenient Riemannian metric.

Let $F : \mathbb{C} \to \mathbb{C}$ be the map $s_1 + is_2 \mapsto \lambda s_1 + is_2/\lambda$. Note F is the time-1 map of the vector field V given by

$$\dot{s}_1 = (\log \lambda) s_1, \quad \dot{s}_2 = -(\log \lambda) s_2.$$

Let $0 < r_1 < r_0 < a_0$, and define \tilde{r}_0 and \tilde{r}_1 by $\tilde{r}_j = (2/p)r_j^{p/2}$ for j = 0, 1. Define a "slow-down" function Ψ_p for the *p*-pronged singularity on the interval $[0, \infty)$ so that:

- (1) $\Psi_p(u) = (p/2)^{(2p-4)/p} u^{(p-2)/p}$ for $u \leq \tilde{r}_1^2$;
- (2) Ψ_p is C^{∞} except at 0;
- (3) $\Psi'_{p}(u) \geq 0$ for u > 0;
- (4) $\Psi_p(u) = 1$ for $u \ge \tilde{r}_0^2$.

Consider the vector field V_{Ψ_p} defined by

$$\dot{s}_1 = (\log \lambda) s_1 \Psi_p \left(s_1^2 + s_2^2 \right)$$
 and $\dot{s}_2 = -(\log \lambda) s_2 \Psi_p \left(s_1^2 + s_2^2 \right)$.

Let G_p be the time-1 map of the vector field V_{Ψ_p} . Assume r_1 is chosen to be small enough so that $G_p = F$ on a neighborhood of the boundary of $D_{\tilde{r}_0}$, and assume r_0 is chosen to be small enough so that D_{r_0} is disjoint from the other open sets in the atlas defined in Definition 5 parts (6) and (7).

Let $\widetilde{a}_0 = (2/p)a_0^{p/2}$, and define the coordinate change $\Phi_j : \varphi_0 S_j^s \to \{z : \operatorname{Re} z \ge 0\} \cap D_{\widetilde{a}_0}$ by

$$\Phi_j(z) = (2/p)z^{p/2} = w = s_1 + is_2.$$

Define $g: M \to M$ by g(x) = f(x) outside D_{r_0} , and meanwhile define g on each sector S_i^s by

$$g(x) = \varphi_0^{-1} \Phi_j^{-1} G_p \Phi_j \varphi_0(x).$$

Theorem 6. The function g defined above is well-defined on the unstable prongs and singularity. It is in fact a diffeomorphism topologically conjugate to f, and for any $\varepsilon > 0$, r_0 and r_1 can be chosen so that $||f - g||_{C^0} < \varepsilon$. In particular, g admits a Markov partition of arbitrarily small diameter.

Next we define a Riemannian metric $\zeta = \langle \cdot, \cdot \rangle$ on $M \setminus \{x_0\}$ with respect to which the map g is areapreserving. In the stable sector $S_j^s \cap \varphi_0^{-1}(D_{\tilde{a}_0})$, we consider the coordinates $w = s_1 + is_2$ given by $\Phi_j \circ \varphi_0$ defined above. Outside of this neighborhood, we use the coordinates $z = s_1 + is_2$. In both sets of coordinates, the stable and unstable transversal measures are $\nu^s = |ds_1|$ and $\nu^u = |ds_2|$. On stable sectors in $M \setminus \{x_0\}$, we define the Riemannian metric ζ to be the pullback of $(ds_1^2 + ds_2^2) / \Psi(s_1^2 + s_2^2)$ under $\Phi_j \circ \varphi_0$. In regular neighborhoods (U_k, φ_k) , we define $\zeta = \varphi_k^* (ds_1^2 + ds_2^2)$. Since \tilde{r}_0 is chosen so that $\varphi_0^{-1}(D_{\tilde{r}_0})$ is disjoint from regular neighborhoods, and $\Psi(u) \equiv 1$ for $u \geq \tilde{r}_0^2$, ζ is consistently defined on chart overlaps. One can further show that ζ agrees with the Euclidean metric in $\varphi_0^{-1}(D_{\tilde{r}_0})$. So ζ can be extended to a Riemannian metric on M.

Theorem 7. The diffeomorphism $g: M \to M$ is area preserving with respect to the Riemannian metric ζ defined above.

4 Thermodynamics

My main research objective is to effect thermodynamic formalism. Given a probability measure μ on a compact manifold M with a μ -preserving map $f: M \to M$, the entropy of the map is $h_{\mu}(f)$.

Without getting into details, $h_{\mu}(f)$ is the *amount of "randomness"* in the system in the following sense: suppose $\varphi : M \to \mathbb{R}$ is continuous. We can think of φ as a random variable (an *observable*) on the probability space (M, μ) . Then $X_n := \varphi \circ f^n$ is a stochastic process, and greater entropy leads to more scattered or "chaotic" values of X_n as $n \to \infty$.

We often have a *potential function* $\varphi : M \to \mathbb{R}$. In principle, this potential function can be any continuous function. But the potential function I'm most interested in is $\varphi_t(x) = -t \log |df|_{E^u(x)}|$. This is the *geometric potential*: it's the potential function of interest for a dynamical system, since it shows how expansive the dynamics are.

For example, for pseudo-Anosov homeomorphisms, $|df|_{E^u(x)}| = \lambda > 1$ for every $x \in M \setminus S$, so $\varphi_t(x) \equiv -t \log \lambda$.

But the geometric potential is a little bit more subtle for globally smooth pseudo-Anosov models, in that it vanishes at the singularities but may fail to be Hölder continuous there.

In general, we are interested in measures μ that maximize the quantity

$$h_{\mu}(f) + \int_{M} \varphi \, d\mu.$$

In a sense, the integral of the potential represents the "total energy" the system possesses with that potential energy field (strictly speaking times a negative constant, which we usually absorb into φ). So optimizing this quantity is a mathematical formalization of the thermodynamic principle that nature "maximizes entropy and minimizes energy".