Equilibrium States of Almost Anosov Diffeomorphisms

Penn State University Student Dynamics Seminar

Dominic Veconi

Penn State University

April 4 2019

・ロット (四) ・ (日) ・ (日) ・ (日)

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Almost Anosov Diffeomorphisms

Definition

A C^4 diffeomorphism f on a Riemannian manifold M is almost Anosov if there exist two continuous families of cones $x \mapsto C_x^u, C_x^s \subset TM$ such that, except for a finite set S,

- 1. $Df_x \mathcal{C}^u_x \subseteq \mathcal{C}^u_{f_x}$ and $Df_x \mathcal{C}^s_x \supseteq \mathcal{C}^s_{f_x}$;
- 2. $\|Df_xv\| > \|v\| \ \forall v \in \mathcal{C}^u_x \text{ and } \|Df_xv\| < \|v\| \ \forall v \in \mathcal{C}^s_x.$

By continuity, it follows that for each $p \in S$,

- $Df_pC_p^u \subseteq C_p^u$ and $Df_pC_p^s \supseteq C_p^s$;
- $\blacktriangleright \ \|Df_pv\| \ge \|v\| \ \forall v \in \mathcal{C}_p^u \text{ and } \|Df_pv\| \le \|v\| \ \forall v \in \mathcal{C}_p^s.$

Assume S is invariant, and in fact fp = p for all $p \in S$ (by considering f^n).

Remark

The above definition will yield a regular Anosov diffeomorphism if we remove the clause "except for a finite set S".

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Non-degeneracy

Denote $B_r(A) = \{x \in M : d(x, A) < r\}$, with d(x, A) the Riemannian distance from x to the set $A \subset \mathbb{T}^2$.

Definition

An almost Anosov diffeomorphism is *non-degenerate* (up to third order) if there exist constants $r_0 > 0$ and κ^u, κ^s such that for all $x \in B_{r_0}(S)$,

 $\begin{aligned} \|Df_xv\| &\geq \left(1+\kappa^u d(x,S)^2\right)\|v\| \qquad \forall v \in \mathcal{C}_x^u, \\ \|Df_xv\| &\leq \left(1-\kappa^s d(x,S)^2\right)\|v\| \qquad \forall v \in \mathcal{C}_x^s. \end{aligned}$

If f is almost Anosov, then for any constant r > 0, there exist constants $0 < K^s < 1 < K^u$, depending on r, such that for all $x \notin B_r(S)$, and for all $v^u \in C_x^u$ and $v^s \in C_x^s$,

 $\|Df_xv\| \ge K^u \|v\|$ and $\|Df_xv\| \le K^s \|v\|$

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Stable and unstable submanifolds

Define the *local stable and unstable manifolds* at the point $x \in M$:

$$\begin{split} & W_{\varepsilon}^{u}(x) = \left\{ y \in M : d\left(f^{-n}y, f^{-n}x\right) \leq \varepsilon \quad \forall n \geq 0 \right\}, \\ & W_{\varepsilon}^{s}(x) = \left\{ y \in M : d\left(f^{n}y, f^{n}x\right) \leq \varepsilon \quad \forall n \geq 0 \right\}. \end{split}$$

Theorem (Hu 2000)

There exists an invariant decomposition of the tangent bundle into $TM = E^u \oplus E^s$ such that for every $x \in M$:

•
$$E_x^\eta \subseteq \mathcal{C}_x^\eta$$
 for $\eta = s, u$;

•
$$Df_x E_x^\eta = E^\eta(f_x)$$
 for $\eta = s, u$;

• $W_{\varepsilon}^{\eta}(x)$ is a C^1 curve, which is tangent to $E^{\eta}(x)$ for $\eta = s, u$.

Furthermore, the decomposition $TM = E^u \oplus E^s$ is continuous everywhere except possibly on S.

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Coordinates of Singularity

Proposition (Hu 2000)

If $f: M \to M$ is almost Anosov and $p \in S$, then $D^2 f_p = 0$, so there is a coordinate system around p for which f is expressible as

$$f(x,y) = \left(x(1+\varphi(x,y)), y(1-\psi(x,y)) \right), \quad (1)$$

for $(x, y) \in \mathbb{R}^2$ and

$$\begin{aligned} \varphi(x,y) &= a_0 x^2 + a_1 x y + a_2 y^2 + O\left(|(x,y)|^3\right), \\ \psi(x,y) &= b_0 x^2 + b_1 x y + b_2 y^2 + O\left(|(x,y)|^3\right), \end{aligned}$$

where $|(x, y)| := \sqrt{x^2 + y^2}$ for $x, y \in \mathbb{R}$. Assume $M = \mathbb{T}^2$, $f : \mathbb{T}^2 \to \mathbb{T}^2$ is almost Anosov with singular set $S = \{0\}$, and that $Df_0 = \mathrm{Id}$. Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Almost Anosov Conjugacy

Assumption: There are constants r_0 and r_1 , with $0 < r_0 < r_1$ for which the almost Anosov map $f : \mathbb{T}^2 \to \mathbb{T}^2$ is equal to a linear Anosov map $\tilde{f} : \mathbb{T}^2 \to \mathbb{T}^2$ outside of $B_{r_1}(0)$, and within $B_{r_0}(0)$, f has the form (1).

Theorem (V.)

A nondegenerate almost Anosov diffeomorphism $f : \mathbb{T}^2 \to \mathbb{T}^2$ satisfying the above assumption is topologically conjugate to an Anosov diffeomorphism.

Corollary

Almost Anosov diffeomorphisms admit Markov partitions of arbitrarily small diameter.

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Young diffeomorphisms: stable and unstable discs

An embedded C^1 disc $\gamma \subset M$ is an *unstable* (resp. *stable*) *disc* if for all $x, y \in \gamma$, we have $d(f^{-n}x, f^{-n}y) \to 0$ (resp. $d(f^nx, f^ny) \to 0$) as $n \to +\infty$.

Definition

A collection of embedded C^1 discs $\Gamma^u = \{\gamma^u\}$ is a *continuous* family of unstable discs if there is a homeomorphism $\Phi: K^s \times D^u \to \bigcup \gamma^u$, where $K^s \subseteq M$ is a Borel subset and $D^u \subset \mathbb{R}^d$ is the unit disc for some $d < \dim M$, satisfying:

•
$$\gamma^{u} = \Phi(\{x\} \times D^{u})$$
 is an unstable disc;

x → Φ|_{{x}×D^u} is a continuous map from K^s to the space of C¹ embeddings of D^u into M that can be extended to a continuous map of K^s.

Continuous families of stable discs are defined similarly.

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Young diffeomorphisms: hyperbolic product structure

Definition

A set $\Lambda \subseteq M$ has hyperbolic product structure if there exists a continuous family $\Gamma^u = \{\gamma^u\}$ of unstable discs, and a continuous family of stable discs $\Gamma^s = \{\gamma^s\}$ such that

- dim γ^{s} + dim γ^{u} = dim M;
- the γ^u discs intersect the γ^s discs at exactly one point transversally, with an angle uniformly bounded away from 0;
- $\land \Lambda = (\bigcup \gamma^u) \cap (\bigcup \gamma^s).$

A subset $\Lambda_0 \subseteq \Lambda$ is an *s*-subset if it has hyperbolic product structure and is defined by the same family Γ^u of unstable discs as Λ , and a continuous subfamily of stable discs $\Gamma_0^s \subseteq \Gamma^s$. A *u*-subset is defined similarly.

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Young diffeomorphisms: definition

A map $f: M \to M$ is a Young diffeomorphism if:

1. There exists $\Lambda \subset M$ with hyperbolic product structure, a countable collection of continuous subfamilies $\Gamma_i^s \subset \Gamma^s$ of stable discs, and positive integers τ_i , $i \ge 0$, such that the *s*-subsets

$$\Lambda_i^s := \bigcup_{\gamma \in \Gamma_i^s} (\gamma \cap \Lambda) \subset \Lambda \tag{2}$$

are pairwise disjoint and satisfy

• *invariance*: for every $x \in \Lambda_i^s$,

$$f^{ au_i}\left(\gamma^s(x)
ight)\subset \gamma^s\left(f^{ au_i}(x)
ight), \quad f^{ au_i}\left(\gamma^u(x)
ight)\supset \gamma^u\left(f^{ au_i}(x)
ight)$$

Markov property: Λ^u_i := f^{τ_i}(Λ^s_i) is a u-subset of Λ such that

$$egin{aligned} f^{- au_i}\left(\gamma^s\left(f^{ au_i}(x)
ight)\cap \Lambda^u_i
ight)&=\gamma^s(x)\cap \Lambda,\ f^{ au_i}\left(\gamma^u(x)\cap \Lambda^s_i
ight)&=\gamma^u\left(f^{ au_i}(x)
ight)\cap \Lambda \end{aligned}$$

・ロト ・ 西 ・ ・ ヨ ・ ・ ヨ ・ うへの

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

of Young Towers

Young diffeomorphisms: definition

2. For every $\gamma^{u} \in \Gamma^{u}$, the leaf volume $\mu_{\gamma^{u}}$ on γ^{u} satisfies

$$\mu_{\gamma^{u}}(\gamma^{u}\cap\Lambda)>0, \quad \mu_{\gamma^{u}}\left(\overline{\left(\Lambda\setminus\bigcup\Lambda_{i}^{s}
ight)\cap\gamma^{u}}
ight)=0.$$

3. For $x \in \Lambda_i^s$, define $\tau(x) = \tau_i$ to be the inducing time, and the induced map $F : \bigcup_{i \in \mathbb{N}} \Lambda_i^s \to \Lambda$ by $F|_{\Lambda_i^s} = f^{\tau_i}|_{\Lambda_i^s}$. Then there is 0 < a < 1 s.t. for any $i \in \mathbb{N}$, we have:

For
$$x \in \Lambda_i^s$$
, $y \in \gamma^s(x)$,

 $d(F(x),F(y)) \leq ad(x,y);$

• For
$$x \in \Lambda_i^s$$
, $y \in \gamma^u(x) \cap \Lambda_i^s$,

 $d(x,y) \leq ad(F(x),F(y)).$

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Young diffeomorphisms: definition

4. (Bounded estimates of distortion) Denote the subspace

$$E^{u}(f^{k}x) := T_{f^{k}x}f^{k}(\gamma^{u}(x)) = Df_{x}^{k}T_{x}\gamma^{u}(x),$$

and let $J^{u}F(x) = \det |DF|_{E_{x}^{u}}|$. There exists c > 0 and $\kappa \in (0, 1)$ such that:

For all $n \ge 0$, $x \in F^{-n}\left(\bigcup_{i\ge 1}\Lambda_i^s\right)$, and $y \in \gamma^s(x)$, we have

$$\left|\log\frac{J^{u}F(F^{n}(x))}{J^{u}F(F^{n}(y))}\right| \leq c\kappa^{n}.$$

► For any $i_0, \ldots, i_n \in \mathbb{N}$, $F^k(x)$, $F^k(y) \in \Lambda_{i_k}^s$ for $0 \le k \le n$ and $y \in \gamma^u(x)$, we have

$$\left|\log \frac{J^u F(F^{n-k}(x))}{J^u F(F^{n-k}(y))}\right| \le c \kappa^k.$$

5. There exists $\gamma^{u} \in \Gamma^{u}$ such that $\sum_{i=1}^{\infty} \tau_{i} \mu_{\gamma^{u}} \left(\Lambda_{i}^{s} \cap \gamma^{u} \right) = \int_{\gamma^{u}} \tau \, d\mu_{\gamma^{u}} < \infty.$ Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Equilibrium states and geometric potentials

Definition

Given a continuous potential function $\varphi : M \to \mathbb{R}$, a probability measure μ_{φ} on M is an *equilibrium measure* for φ if

$$P_f(arphi) = h_{\mu_arphi}(f) + \int_M arphi \, d\mu_{arphi},$$

where $h_{\mu\varphi}(f)$ is the metric entropy of (M, f) with respect to μ_{φ} , and $P_f(\varphi)$ is the topological pressure of φ ; that is, $P_f(\varphi)$ is the supremum of $h_{\mu}(f) + \int_M \varphi \, d\mu$ over all f-invariant probability measures μ .

We consider equilibrium states of the geometric t-potential

$$\varphi_t(x) = -t \log \left| Df \right|_{E^u(x)} \right|.$$

We denote $\mu_t := \mu_{\varphi_t}$.

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Main Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Decay of correlations and CLT

Definition

The map f has exponential decay of correlations with respect to a measure $\mu \in \mathcal{M}(f, M)$ and a class of functions \mathcal{H} on Mif there exists $\kappa \in (0, 1)$ such that for any $h_1, h_2 \in \mathcal{H}$,

$$\left|\int (h_1 \circ f^n) h_2 d\mu - \int h_1 d\mu \int h_2 d\mu\right| \leq C \kappa^n$$

for some $C = C(h_1, h_2) > 0$. Furthermore, f satisfies the Central Limit Theorem (CLT) if for any $h \in \mathcal{H}$ that is not a coboundary (ie. $h \neq h' \circ f - h'$), there exists $\sigma > 0$ such that

$$\lim_{n \to \infty} \mu \left\{ \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} \left(h(f^i(x)) - \int h \, d\mu \right) < t \right\}$$
$$= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^t e^{-\tau^2/2\sigma^2} \, d\tau$$

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Main Results

うしん 同一人用 人用 人用 人口 マ

Thermodynamics of Young's diffeomorphisms

Recall that an *SRB measure* is a probability measure with positive Lyapunov exponents almost everywhere, and which has absolutely continuous conditional measures on unstable leaves.

Theorem (Pesin, Senti, Zhang 2016)

Let $f : M \to M$ be a $C^{1+\varepsilon}$ Young diffeomorphism of a compact Riemannian manifold M. Assume the inducing time τ is a first return time to Λ . Then the following hold:

- 1. There is a unique equilibrium measure μ_1 for the potential φ_1 , which is the unique SRB measure.
- 2. Suppose for some C > 0 and $h \in (0, h_{\mu_1}(f))$, we have $S_n \leq Ce^{hn}$, where S_n is the number of stable sets Λ_i^s with inducing time $\tau_i = n$. Then there is $t_0 < 0$ s.t. for every $t \in (t_0, 1)$, there is a measure $\mu_t \in \mathcal{M}(f, Y)$, where $Y := \{f^k(x) : x \in \bigcup \Lambda_i^s, 0 \leq k \leq \tau(x) 1\}$, which is a unique equilibrium measure for φ_t .

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Thermodynamics of Young diffeomoprhisms

Theorem (continued)

3. Suppose $gcd(\tau_i) = 1$, and that there is K > 0 such that for every $i \ge 0$, every $x, y \in \Lambda_i^s$, and $0 \le j \le \tau$,

 $d\left(f^{j}(x),f^{j}(y)\right) \leq K \max\left\{d(x,y),d(F(x),F(y))\right\}.$

Then for every $t \in (t_0, 1)$, the measure μ_t has exponential decay of correlations and satisfies the CLT with respect to a class of functions \mathcal{H} which contains all Hölder continuous functions on M.

Theorem (Shahidi, Zelerowicz 2018)

If the induced map is mixing, then the system is additionally Bernoulli.

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Main result

Theorem (V.)

Given an almost Anosov map $f : \mathbb{T}^2 \to \mathbb{T}^2$ satisfying preceding assumption, the following statements hold:

- 1. There is a $t_0 < 0$ so that for any $t \in (t_0, 1)$, there is a unique equilibrium measure μ_t associated to φ_t . This equilibrium measure has exponential decay of correlations and satisfies the central limit theorem with respect to a class of functions containing all Hölder continuous functions on \mathbb{T}^2 . The map is mixing with respect to μ_t , and hence Bernoulli.
- 2. For t = 1, there are two equilibrium measures associated to φ_1 : the Dirac measure δ_0 centered at the origin, and a unique invariant SRB measure μ . If f is Lebesgue-area preserving, this SRB measure coincides with Lebesgue measure.
- 3. For t > 1, δ_0 is the unique equilibrium measure associated to φ_t .

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Proof outline I

Step 1: Construct Young tower.

Let *P* be an element of the Markov partition for (M, f), and let $\tau(x)$ be the first return time of *x* to *P*. For $x \in P$, denote $\gamma^{s}(x)$ and $\gamma^{u}(x)$ respectively to be the connected component of the intersection of the stable and unstable leaves with *P*. For *x* with $\tau(x) < \infty$, define:

$$\Lambda^{s}(x) = \bigcup_{y \in U^{u}(x) \setminus A^{u}(x)} \gamma^{s}(y),$$

where $\widetilde{U}^{u}(x) \subseteq \widetilde{\gamma}^{u}(x)$ is an interval containing x, open in the induced topology of $\widetilde{\gamma}(x)$, and $\widetilde{A}^{u}(x) \subset \widetilde{U}^{u}(x)$ is the set of points that either lie on the boundary of the Markov partition, or never return to \widetilde{P} . Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Proof outline II

Theorem (V.)

The collection of sets $\{\Lambda^{s}(x)\}$ forms a countable collection $\{\Lambda_{i}^{s}\}$ of s-sets satisfying conditions (Y1) - (Y5), making $f: M \to M$ a Young's diffeomorphism with tower base

$$\Lambda := \bigcup_{i=1}^{\infty} \overline{\Lambda_i^s}$$

- (Y1) follows from conjugacy to Anosov systems.
- ► (Y2) deals with measure-0 events and is easy to show.
- (Y3) follows because points on stable (resp. unstable) leaves do not expand (resp. contract) in the neighborhood of the singularity.
- ► (Y5) follows from Kac's theorem since \(\tau\) is a first-return time.

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Proof outline III

Condition (Y4) (bounded estimates of distortion) follows from the following result:

Theorem (Hu 2000)

There exists a constant I > 0 and $\theta \in (0, 1)$ such that if $\gamma \subset f(B_{r_1}(0)) \setminus B_{r_1}(0)$ is a W^s -segment (that is γ is a subset of a stable leaf, and is homeomorphic to an open interval in the induced topology), and if $f^i(\gamma) \subset B_{r_1}(0)$ for i = 1, ..., n - 1, then for every $x, y \in \gamma$,

$$\left|\log\frac{\left|Df^{n}|_{E^{u}(x)}\right|}{\left|Df^{n}|_{E^{u}(y)}\right|}\right| \leq Id^{u}(x,y)^{\theta},$$
(3)

where $d^{u}(x, y)$ is the induced Riemannian distance from x to y in the stable leaf γ .

Now it's a straightforward calculation.

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers

Proof outline IV

All that's left to show is

$$S_n := \# \{\Lambda_i^s : \tau_i = n\} \le C e^{hr}$$

This follows from properties of the conjugate Anosov system $\tilde{f}: \mathbb{T}^2 \to \mathbb{T}^2$ and the conjugacy, since $h_{top}(\tilde{f}) = h_m(\tilde{f})$, where *m* is Lebesgue measure, and observation that

$$\left|\int \log |Df|_{E^u}| \,\, dm - \log \lambda\right| < \varepsilon$$

for r_1 sufficiently small.

Equilibrium States of Almost Anosov Diffeomorphisms

Dominic Veconi

Almost Anosov Maps

Young Towers

Thermodynamics of Young Towers