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Information

Before talking about entropy, we need to answer a different question: how
to quantify information.

If we do an experiment, and the experiment has n possible outcomes, each
with probability p;, how much information do we gain if outcome i occurs?

Example: The first letter of a word is X. How much information do we
have about this word? What if the first letter is T?

Suppose we have a finite alphabet E = {ej,...,ex}, and X1, Xs,... are
i.i.d. random variables with values in F.

Recall this means X; are measurable functions from a probability space
(,P) to E. For example, we could have Q = EN.

Suppose P[X; = €] = p, for each e € E. Let p = (pey,--.,Pey) be the
probability distribution vector for E.

Question: How do we determine the amount of information encoded in
the outcome X (w), Xo(w),...,Xp(w) € E?

One way we can do this is say a computer is storing this information for us.
How should we program the computer to store each piece of information
in the letter e;?

Associate to each letter e € E a short string of Os and 1s. Then the string
e1,...ey becomes a string of Os and 1s.

Let’s think about what we want for this code:

1. More probable letters should have fewer digits. This economizes on
storage: if we have higher-probability events with too long strings,
our storage will fill up faster. (Consider Morse code: the letters e
and t are - and —, but ¢ is —— - —).

2. Our code needs to be translatable from binary back into something
useful. So no code for a letter can also be the beginning of another
code.

— Example: If S is encoded with 0110, we can’t encode L with
011011. Since as a computer translates, we want the computer
to know when it reaches the end of a letter. Imagine if we also
encoded H with 11. Then Ana might try texting Caitlin “Dom’s
talk is lit”, but Caitlin’s phone may render this as “Dom’s talk
is shit”!



The latter condition makes this a binary prefix code, and is actually how
computers transcribe letters to binary and back.

Let £(e) be the length of the code for the letter e, and let c(e) € {0, 1}(¢)
be the code of e. Let

#E
C={cle):e€ E} C H{O,l}k
k=1
be the binary code for the alphabet E.

The first condition in this list can be achieved by minimizing the expected
length of the code of a random symbol:

L,(C) = [ tdp =Y petie)

eckE

NOW, we're going to construct a specific code, and show that it’s almost
optimal.

Assume F is enumerated so that pe, > pe, > -+ > Dey -
Define A : E — N so that 27¢) < p, < 27Ae)+1,
Also define p, = 272 and g, = > i<k Pe;-

Then A(en) < Alex) Vm < k. So the binary representation of the number
g has at most A(ey) digits:

Aer)

qr = Z ci(er)2™

=1

for uniquely determined c;(ex), ..., cxe,)(€x) € {0,1}. Indeed, the small-
est power of 1/2 that is used in the construction of g, is 27 *ex-1),

Observe also that G, > G + 2-(¥) for m > k. So,

(cr(en), - eaeny(€r)) # (ci(em), s eagen) (€m))

Indeed, adding another term of 2-*(¢+) would cascade a change in preced-
ing digits ¢;.

UPSHOT: The code C = {c(e) : e € E} is a prefix code, where ¢(e) =
(c1(e), ..., cxge)(€e)). The length of each code is thus £(e) = A(e).



2 Information Entropy

e Now, recall 274¢) < p, < 274+ S0 —f(e) < logy(pe) < —L(e) + 1, or
—logy(pe) < £(e) < 1 —log,(pe).

e So the expected length is bounded in the following way:

= pelogy(pe) < Lp(C) <1=Y pelogy(pe)

eckE ecE

e Definition. For a probability distribution p = (pe)ecr on a countable set
E, the binary entropy of p is

Hy(p) :== — Zpe logs (pe)
ecE

where we use the convention 0log 0 = 0. If we replace 2 by Euler’s constant
e = 2.71..., then H.(p) = H(p) is the Shannon entropy, or simply the
entropy:

H(p) = — Zpe log(pe)

eckE

Theorem 1. Let p = (pe)ecr be a probability distribution on a finite alphabet
E. Then for any binary prefiz code C = {c(e) : e € E}, we have L,(C) > Ha(p).
Furthermore, there is a binary prefiz code C' with L,(C) < Ha(p) + 1.

Theorem 2. Let E be a finite set and let p be a probability vector on E. Then
the entropy H(p) is minimal if p = ¢ for some e € E; that is, if peo = 0 if
e #e, and p. = 1. In this case, H(p) = 0.

On the other hand, H(p) is maximal if po = 1/#E for every e € E (that is,
p is uniformly distributed). In this case, H(p) = log(#E).

Proving the second theorem is a simple Lagrange multipliers exercise.

Theorem 3 (Shannon). Let E be a finite set, and let X1,Xa,... : Q@ - E
be i.i.d. random variables with P[X; = e] = p. for every i > 1, so that p =
(Peys---sDey) is a probability vector on E. For w € §Q, define

ﬂn(w) = HpXi(w)
=1

Then m,(w) is the probability that the observed sequence Xi(w), ..., X, (w) oc-
curs. Finally let Y, (w) = —log (an (w)), the information after the n'* experi-
ment. Then,

1 1 Qy, noos
—Clogm, = =Sy, 2 g 5.
—log n; (p) a.s

This follows from strong law of large numbers.



So how is entropy a measurement of disorder? It becomes clear in these
three theorems.

The first one shows that Ha(p) is a good estimate for the expected com-
plexity of encoded information on an experiment.

The second one shows that if a certain outcome happens 100% of the
time, then the entropy is 0. But if every outcome is equally likely, and
an experiment is repeated, then we essentially see “randomness” in the
experiment.

The third one shows that the average information received converges to
the entropy H(p).

What does this have to do with entropy in physics? Well, if we have a
medium with particles, then we can look at a (finite) number of possible
configurations the particles can take on.

If all configurations are equally probable, the particles are highly random
and disordered; this is maximal entropy.

One-Sided Shifts

But in particular, we're interested in probability theory and dynamical
systems.

We define the Bernoulli shift: Let E be a finite alphabet with probability
vector p = (Pegs - - - » Pen_, ) and let QF := ENoand let P be the probability
measure defined on cylinders:

[0y ... Tp_1] = {wEQJr:wi::z:iVOgiSnfl}

so the probability is defined as

n—1
P [x07 cee 71'77.71] - H De;
=0

We can interpret Q1 as the space of all sequences of experimental out-
comes.

Say the n'"" outcome is given by X,,(w). Then X, (w) = w, is simply the
projection on the n'" coordinate.

However, in dynamical systems, we typically treat a stochastic process like
(X,)n>1 instead as a composition of an observable function f: QT — R
with a measurable transformation 7' : Qt — QF.



e In this case, we let T be the shift map:
T(w)i = Wi+1

That is, T(w) is the sequence obtained by shifting the sequence w to the
left by one and chopping off the first letter of the sequence.

e So, if f(w) := w1, the coordinate projection X,, can instead be expressed
as X, = foT™.

e In particular, T is a measure-preserving transformation. If we take a
cylinder [zo,...,2n_1], then T~ ![zg,...,7,_1] has measure equal to the
measure of the cylinder:

N-1 N-1 n—1 n—1
P (T—l[xo, o Tp]) =P (H [z, 21, ... ,xn]> = Z De; H Pe, = Hpej
1=0 i=0 j=0 =0
= ]P[l’o, . ,Zn_l]

e Most of the important maps of ergodic theory are these: measurable
and measure-preserving transformations. Because the stochastic processes
they generate, X,, = f o T™, are identically distributed.

4 Metric Entropy of Bernoulli Shift

e For n € N, denote by P, the probability measure on E" given by the
projection of P on EN onto the first n coordinates. That is:

P, ({eo,---,en-1}) :=Pleg,...,en_1]

Theorem 4. Let E' and E? be finite sets with probability vectors p* and p?.
Let p be a probability vector on the finite set E' x E? with marginals p* and p?:

Z Dlete2) = pl Ve' € B! (probability of 1st coordinate being e*)
e2€E?
and
Z Dlel,e2) = p%  Ve? € E*  (probability of 2nd coordinate being *)
eleE?
Then H(p) < H(p') + H(p?).
e In particular, this implies the entropies H(P™*"), H(P™), and H(P")
for the finite probability spaces E™*" E™, and E™ respectively satisfy:
H(Pm-i-n) S H(Pm) + H(Pn)

e It is an exercise in real analysis that the following limit exists:

hi= he(T) = lim ~H(P") = inf ~H(P")

n—oo N n>1n

We call this the entropy of the system.
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Metric Entropy in Ergodic Theory

Now suppose (2,4, i) is a general probability space, and let T :  — Q
be a measurable transformation. Let f : £ — R be an observable.

A collection of measurable subsets § = {C;},.; of (Q,A,p) is called a
measurable partition if ;(C; N C;) =0 for i # j, and p (U;c; Ci) = 1.

We can consider each of these C;s to be one of finitely many outcomes in
an experiment—Iletters in an alphabet, for example.

With this interpretation, the entropy of the partition is

H(E) = Hu(§) == > u(C)log pu(C)

Cceg

What if we want to consider not just events at the first reading of the
experiment, but after a second reading at time 1?7

Well now there are more possibilities: we have to consider the events
right now, but we also have to consider the events of the next stage in
the experiment. That is, we not only consider events C' € &, but also
T-1C) e T71(¢).

A measurable partition £’ is a refinement of a measurable partition £ if
w(Ci\ C;) = 0 for every C; € ¢, C; € &; that is, every element of ¢ is
contained (up to a set of measure 0) in an element of &.

Given two partitions ¢ and 7, the common refinement £ V 7 is the
smallest partition that is a refinement of both ¢ and 7. That is, the
partition of intersections:

5\/772:{01‘003‘101'65, CjEn}.

In particular, if we consider events that happen both now and will happen
at the next stage, we consider the common refinement of £ and T—1(&):

Tﬁl(g) \/E = {Tﬁl(ci) n Cj : Ci, Cj S f}
Of course, we can then ask what happens at the stage after the next one,

and take three common refinements (since common refining is obviously
associative and commutative):

T2OVT HOVE={T>C))NT(C;)NCk: C;,C;,C € €}

And on, and on. As with the one-sided shift, we get:

n—1
H (&™) <H (™) +H ("), where ¢"=\/T7%(
k=0



whence the following limit exists:

1 n—1

h(T.€) = lim —H, (\/ T’%s))
k=0

That’s the entropy of T' with respect to the partition £. And it looks confus-

ing, but actually it’s surprisingly simple: it’s the long-term asymptotically

observed disorder after repeating an experiment while observing a finite

number of possible outcomes.

But a partition £ is generally not part of the structure of a dynamical
system. So there’s one more step in the construction of entropy. This is
to eliminate the consideration of a partition altogether.

Definition. The Kolmogorov-Sinai Entropy (a.k.a. the metric entropy)
of the measure-preserving dynamical system (Q, A, u, T) is

h(T) = Stgp hy (T, €),

where the supremum is over all finite measurable partitions of ).



