Entropy—A Concrete Introduction Student-Directed Colloquium 4/24/2019

1 Information

- Before talking about entropy, we need to answer a different question: how to quantify information.
- If we do an experiment, and the experiment has n possible outcomes, each with probability p_i , how much information do we gain if outcome i occurs?
- Example: The first letter of a word is X. How much information do we have about this word? What if the first letter is T?
- Suppose we have a finite alphabet $E = \{e_1, \ldots, e_N\}$, and X_1, X_2, \ldots are i.i.d. random variables with values in E.
- Recall this means X_i are measurable functions from a probability space (Ω, \mathbb{P}) to E. For example, we could have $\Omega = E^{\mathbb{N}}$.
- Suppose $\mathbb{P}[X_i = e] = p_e$ for each $e \in E$. Let $p = (p_{e_1}, \ldots, p_{e_N})$ be the probability distribution vector for E.
- Question: How do we determine the amount of *information* encoded in the outcome $X_1(\omega), X_2(\omega), \ldots, X_n(\omega) \in E$?
- One way we can do this is say a computer is storing this information for us. How should we program the computer to store each piece of information in the letter e_i ?
- Associate to each letter $e \in E$ a short string of 0s and 1s. Then the string $e_1, \ldots e_n$ becomes a string of 0s and 1s.
- Let's think about what we want for this code:
 - 1. More probable letters should have fewer digits. This economizes on storage: if we have higher-probability events with too long strings, our storage will fill up faster. (Consider Morse code: the letters e and t are \cdot and -, but q is $- \cdot -$).
 - 2. Our code needs to be translatable from binary back into something useful. So no code for a letter can also be the beginning of another code.
 - Example: If S is encoded with 0110, we can't encode L with 011011. Since as a computer translates, we want the computer to know when it reaches the end of a letter. Imagine if we also encoded H with 11. Then Ana might try texting Caitlin "Dom's talk is lit", but Caitlin's phone may render this as "Dom's talk is shit"!

- The latter condition makes this a *binary prefix code*, and is actually how computers transcribe letters to binary and back.
- Let $\ell(e)$ be the length of the code for the letter e, and let $c(e) \in \{0, 1\}^{\ell(e)}$ be the code of e. Let

$$C = \{c(e) : e \in E\} \subseteq \prod_{k=1}^{\#E} \{0, 1\}^k$$

be the binary code for the alphabet E.

• The first condition in this list can be achieved by minimizing the *expected length* of the code of a random symbol:

$$L_p(C) := \int_E \ell \, dp = \sum_{e \in E} p_e \ell(e)$$

- NOW, we're going to construct a specific code, and show that it's almost optimal.
- Assume E is enumerated so that $p_{e_1} \ge p_{e_2} \ge \cdots \ge p_{e_N}$.
- Define $\lambda: E \to \mathbb{N}$ so that $2^{-\lambda(e)} \le p_e < 2^{-\lambda(e)+1}$.
- Also define $\tilde{p}_e = 2^{-\lambda(e)}$ and $\tilde{q}_k = \sum_{j < k} \tilde{p}_{e_j}$.
- Then $\lambda(e_m) \leq \lambda(e_k) \ \forall m \leq k$. So the binary representation of the number \widetilde{q}_k has at most $\lambda(e_k)$ digits:

$$\widetilde{q}_k = \sum_{i=1}^{\lambda(e_k)} c_i(e_k) 2^{-i}$$

for uniquely determined $c_1(e_k), \ldots, c_{\lambda(e_k)}(e_k) \in \{0, 1\}$. Indeed, the smallest power of 1/2 that is used in the construction of \tilde{q}_k is $2^{-\lambda(e_{k-1})}$.

• Observe also that $\tilde{q}_m \ge \tilde{q}_k + 2^{-\lambda(e_k)}$ for m > k. So,

$$(c_1(e_k),\ldots,c_{\lambda(e_k)}(e_k)) \neq (c_1(e_m),\ldots,c_{\lambda(e_k)}(e_m))$$

Indeed, adding another term of $2^{-\lambda(e_k)}$ would cascade a change in preceding digits c_i .

• UPSHOT: The code $C = \{c(e) : e \in E\}$ is a prefix code, where $c(e) = (c_1(e), \ldots, c_{\lambda(e)}(e))$. The length of each code is thus $\ell(e) = \lambda(e)$.

2 Information Entropy

- Now, recall $2^{-\ell(e)} \le p_e < 2^{-\ell(e)+1}$. So, $-\ell(e) \le \log_2(p_e) < -\ell(e) + 1$, or $-\log_2(p_e) \le \ell(e) \le 1 \log_2(p_e)$.
- So the expected length is bounded in the following way:

$$-\sum_{e \in E} p_e \log_2(p_e) \le L_p(C) \le 1 - \sum_{e \in E} p_e \log_2(p_e)$$

• **Definition.** For a probability distribution $p = (p_e)_{e \in E}$ on a countable set E, the *binary entropy* of p is

$$H_2(p) := -\sum_{e \in E} p_e \log_2(p_e)$$

where we use the convention $0 \log 0 = 0$. If we replace 2 by Euler's constant e = 2.71..., then $H_e(p) = H(p)$ is the *Shannon entropy*, or simply the *entropy*:

$$H(p) = -\sum_{e \in E} p_e \log(p_e)$$

Theorem 1. Let $p = (p_e)_{e \in E}$ be a probability distribution on a finite alphabet E. Then for any binary prefix code $C = \{c(e) : e \in E\}$, we have $L_p(C) \ge H_2(p)$. Furthermore, there is a binary prefix code C with $L_p(C) \le H_2(p) + 1$.

Theorem 2. Let E be a finite set and let p be a probability vector on E. Then the entropy H(p) is minimal if $p = \delta_e$ for some $e \in E$; that is, if $p_{e'} = 0$ if $e' \neq e$, and $p_e = 1$. In this case, H(p) = 0.

On the other hand, H(p) is maximal if $p_e = 1/\#E$ for every $e \in E$ (that is, p is uniformly distributed). In this case, $H(p) = \log(\#E)$.

Proving the second theorem is a simple Lagrange multipliers exercise.

Theorem 3 (Shannon). Let E be a finite set, and let $X_1, X_2, \ldots : \Omega \to E$ be i.i.d. random variables with $\mathbb{P}[X_i = e] = p_e$ for every $i \ge 1$, so that $p = (p_{e_1}, \ldots, p_{e_N})$ is a probability vector on E. For $\omega \in \Omega$, define

$$\pi_n(\omega) = \prod_{i=1}^n p_{X_i(\omega)}$$

Then $\pi_n(\omega)$ is the probability that the observed sequence $X_1(\omega), \ldots, X_n(\omega)$ occurs. Finally let $Y_n(\omega) = -\log(p_{X_n(\omega)})$, the information after the nth experiment. Then,

$$-\frac{1}{n}\log \pi_n = \frac{1}{n}\sum_{i=1}^n Y_i \xrightarrow{n \to \infty} H(p) \quad a.s.$$

This follows from strong law of large numbers.

- So how is entropy a measurement of disorder? It becomes clear in these three theorems.
- The first one shows that $H_2(p)$ is a good estimate for the expected complexity of encoded information on an experiment.
- The second one shows that if a certain outcome happens 100% of the time, then the entropy is 0. But if every outcome is equally likely, and an experiment is repeated, then we essentially see "randomness" in the experiment.
- The third one shows that the average information received converges to the entropy H(p).
- What does this have to do with entropy in physics? Well, if we have a medium with particles, then we can look at a (finite) number of possible configurations the particles can take on.
- If all configurations are equally probable, the particles are highly random and disordered; this is maximal entropy.

3 One-Sided Shifts

- But in particular, we're interested in probability theory and dynamical systems.
- We define the **Bernoulli shift**: Let E be a finite alphabet with probability vector $p = (p_{e_0}, \ldots, p_{e_{N-1}})$ and let $\Omega^+ := E^{\mathbb{N}_0}$, and let \mathbb{P} be the probability measure defined on *cylinders*:

$$[x_0, \dots x_{n-1}] := \{ \omega \in \Omega^+ : \omega_i = x_i \,\forall 0 \le i \le n-1 \}$$

so the probability is defined as

$$\mathbb{P}\left[x_0,\ldots,x_{n-1}\right] = \prod_{i=0}^{n-1} p_{e_i}$$

We can interpret Ω^+ as the space of all sequences of experimental outcomes.

- Say the n^{th} outcome is given by $X_n(\omega)$. Then $X_n(\omega) = \omega_n$ is simply the projection on the n^{th} coordinate.
- However, in dynamical systems, we typically treat a stochastic process like $(X_n)_{n\geq 1}$ instead as a composition of an observable function $f: \Omega^+ \to \mathbb{R}$ with a measurable transformation $T: \Omega^+ \to \Omega^+$.

• In this case, we let T be the *shift map*:

$$T(\omega)_i = \omega_{i+1}$$

That is, $T(\omega)$ is the sequence obtained by shifting the sequence ω to the left by one and chopping off the first letter of the sequence.

- So, if $f(\omega) := \omega_1$, the coordinate projection X_n can instead be expressed as $X_n = f \circ T^n$.
- In particular, T is a measure-preserving transformation. If we take a cylinder $[x_0, \ldots, x_{n-1}]$, then $T^{-1}[x_0, \ldots, x_{n-1}]$ has measure equal to the measure of the cylinder:

$$\mathbb{P}\left(T^{-1}[x_0,\ldots,x_{n-1}]\right) = \mathbb{P}\left(\prod_{i=0}^{N-1} [x_i,x_1,\ldots,x_n]\right) = \sum_{i=0}^{N-1} p_{e_i} \prod_{j=0}^{n-1} p_{e_j} = \prod_{j=0}^{n-1} p_{e_j}$$
$$= \mathbb{P}\left[x_0,\ldots,x_{n-1}\right]$$

• Most of the important maps of ergodic theory are these: measurable and measure-preserving transformations. Because the stochastic processes they generate, $X_n = f \circ T^n$, are identically distributed.

4 Metric Entropy of Bernoulli Shift

• For $n \in \mathbb{N}$, denote by P_n the probability measure on E^n given by the projection of \mathbb{P} on $E^{\mathbb{N}}$ onto the first *n* coordinates. That is:

$$P_n(\{e_0,\ldots,e_{n-1}\}) := \mathbb{P}[e_0,\ldots,e_{n-1}]$$

Theorem 4. Let E^1 and E^2 be finite sets with probability vectors p^1 and p^2 . Let p be a probability vector on the finite set $E^1 \times E^2$ with marginals p^1 and p^2 :

$$\sum_{e^2 \in E^2} p_{(e^1, e^2)} = p_{e^1}^1 \quad \forall e^1 \in E^1 \quad (probability of 1st coordinate being e^1)$$

and

$$\sum_{e^1 \in E^1} p_{(e^1, e^2)} = p_{e^2}^2 \quad \forall e^2 \in E^2 \quad (probability of 2nd \ coordinate \ being \ e^2)$$

Then $H(p) \leq H(p^1) + H(p^2)$.

• In particular, this implies the entropies $H(P^{m+n})$, $H(P^m)$, and $H(P^n)$ for the finite probability spaces E^{m+n} , E^m , and E^n respectively satisfy:

$$H(P^{m+n}) \le H(P^m) + H(P^n)$$

• It is an exercise in real analysis that the following limit exists:

$$h := h_{\mathbb{P}}(T) := \lim_{n \to \infty} \frac{1}{n} H(P^n) = \inf_{n \ge 1} \frac{1}{n} H(P^n)$$

We call this the *entropy* of the system.

5 Metric Entropy in Ergodic Theory

- Now suppose $(\Omega, \mathcal{A}, \mu)$ is a general probability space, and let $T : \Omega \to \Omega$ be a measurable transformation. Let $f : \Omega \to \mathbb{R}$ be an observable.
- A collection of measurable subsets $\xi = \{C_i\}_{i \in I}$ of $(\Omega, \mathcal{A}, \mu)$ is called a **measurable partition** if $\mu(C_i \cap C_j) = 0$ for $i \neq j$, and $\mu(\bigcup_{i \in I} C_i) = 1$.
- We can consider each of these C_i s to be one of finitely many outcomes in an experiment—letters in an alphabet, for example.
- With this interpretation, the *entropy* of the partition is

$$H(\xi) = H_{\mu}(\xi) = -\sum_{C \in \xi} \mu(C) \log \mu(C)$$

- What if we want to consider not just events at the first reading of the experiment, but after a second reading at time 1?
- Well now there are more possibilities: we have to consider the events right now, but we also have to consider the events of the next stage in the experiment. That is, we not only consider events $C \in \xi$, but also $T^{-1}(C) \in T^{-1}(\xi)$.
- A measurable partition ξ' is a **refinement** of a measurable partition ξ if $\mu(C'_i \setminus C_j) = 0$ for every $C'_i \in \xi'$, $C_j \in \xi$; that is, every element of ξ' is contained (up to a set of measure 0) in an element of ξ .
- Given two partitions ξ and η , the **common refinement** $\xi \lor \eta$ is the smallest partition that is a refinement of both ξ and η . That is, the partition of intersections:

$$\xi \lor \eta := \{C_i \cap C_j : C_i \in \xi, \ C_j \in \eta\}$$

• In particular, if we consider events that happen both now and will happen at the next stage, we consider the common refinement of ξ and $T^{-1}(\xi)$:

$$T^{-1}(\xi) \lor \xi = \left\{ T^{-1}(C_i) \cap C_j : C_i, C_j \in \xi \right\}$$

• Of course, we can then ask what happens at the stage after the next one, and take three common refinements (since common refining is obviously associative and commutative):

$$T^{-2}(\xi) \vee T^{-1}(\xi) \vee \xi = \left\{ T^{-2}(C_i) \cap T^{-1}(C_j) \cap C_k : C_i, C_j, C_k \in \xi \right\}$$

• And on, and on. As with the one-sided shift, we get:

$$H\left(\xi^{m+n}\right) \leq H\left(\xi^{m}\right) + H\left(\xi^{n}\right), \quad \text{where} \quad \xi^{n} = \bigvee_{k=0}^{n-1} T^{-k}(\xi)$$

whence the following limit exists:

$$h_{\mu}(T,\xi) := \lim_{n \to \infty} \frac{1}{n} H_{\mu} \left(\bigvee_{k=0}^{n-1} T^{-k}(\xi) \right)$$

- That's the entropy of T with respect to the partition ξ . And it looks confusing, but actually it's surprisingly simple: it's the long-term asymptotically observed disorder after repeating an experiment while observing a finite number of possible outcomes.
- But a partition ξ is generally not part of the structure of a dynamical system. So there's one more step in the construction of entropy. This is to eliminate the consideration of a partition altogether.
- **Definition.** The *Kolmogorov-Sinai Entropy* (a.k.a. the *metric entropy*) of the measure-preserving dynamical system $(\Omega, \mathcal{A}, \mu, T)$ is

$$h_{\mu}(T) = \sup_{\xi} h_{\mu}(T,\xi),$$

where the supremum is over all finite measurable partitions of Ω .