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1 Information

• Before talking about entropy, we need to answer a different question: how
to quantify information.

• If we do an experiment, and the experiment has n possible outcomes, each
with probability pi, how much information do we gain if outcome i occurs?

• Example: The first letter of a word is X. How much information do we
have about this word? What if the first letter is T?

• Suppose we have a finite alphabet E = {e1, . . . , eN}, and X1, X2, . . . are
i.i.d. random variables with values in E.

• Recall this means Xi are measurable functions from a probability space
(Ω,P) to E. For example, we could have Ω = EN.

• Suppose P[Xi = e] = pe for each e ∈ E. Let p = (pe1 , . . . , peN ) be the
probability distribution vector for E.

• Question: How do we determine the amount of information encoded in
the outcome X1(ω), X2(ω), . . . , Xn(ω) ∈ E?

• One way we can do this is say a computer is storing this information for us.
How should we program the computer to store each piece of information
in the letter ei?

• Associate to each letter e ∈ E a short string of 0s and 1s. Then the string
e1, . . . en becomes a string of 0s and 1s.

• Let’s think about what we want for this code:

1. More probable letters should have fewer digits. This economizes on
storage: if we have higher-probability events with too long strings,
our storage will fill up faster. (Consider Morse code: the letters e
and t are · and –, but q is – – · –).

2. Our code needs to be translatable from binary back into something
useful. So no code for a letter can also be the beginning of another
code.

– Example: If S is encoded with 0110, we can’t encode L with
011011. Since as a computer translates, we want the computer
to know when it reaches the end of a letter. Imagine if we also
encoded H with 11. Then Ana might try texting Caitlin “Dom’s
talk is lit”, but Caitlin’s phone may render this as “Dom’s talk
is shit”!
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• The latter condition makes this a binary prefix code, and is actually how
computers transcribe letters to binary and back.

• Let `(e) be the length of the code for the letter e, and let c(e) ∈ {0, 1}`(e)
be the code of e. Let

C = {c(e) : e ∈ E} ⊆
#E∐
k=1

{0, 1}k

be the binary code for the alphabet E.

• The first condition in this list can be achieved by minimizing the expected
length of the code of a random symbol:

Lp(C) :=

∫
E

` dp =
∑
e∈E

pe`(e)

• NOW, we’re going to construct a specific code, and show that it’s almost
optimal.

• Assume E is enumerated so that pe1 ≥ pe2 ≥ · · · ≥ peN .

• Define λ : E → N so that 2−λ(e) ≤ pe < 2−λ(e)+1.

• Also define p̃e = 2−λ(e) and q̃k =
∑
j<k p̃ej .

• Then λ(em) ≤ λ(ek) ∀m ≤ k. So the binary representation of the number
q̃k has at most λ(ek) digits:

q̃k =

λ(ek)∑
i=1

ci(ek)2−i

for uniquely determined c1(ek), . . . , cλ(ek)(ek) ∈ {0, 1}. Indeed, the small-

est power of 1/2 that is used in the construction of q̃k is 2−λ(ek−1).

• Observe also that q̃m ≥ q̃k + 2−λ(ek) for m > k. So,(
c1(ek), . . . , cλ(ek)(ek)

)
6=
(
c1(em), . . . , cλ(ek)(em)

)
Indeed, adding another term of 2−λ(ek) would cascade a change in preced-
ing digits ci.

• UPSHOT: The code C = {c(e) : e ∈ E} is a prefix code, where c(e) =(
c1(e), . . . , cλ(e)(e)

)
. The length of each code is thus `(e) = λ(e).
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2 Information Entropy

• Now, recall 2−`(e) ≤ pe < 2−`(e)+1. So, −`(e) ≤ log2(pe) < −`(e) + 1, or
− log2(pe) ≤ `(e) ≤ 1− log2(pe).

• So the expected length is bounded in the following way:

−
∑
e∈E

pe log2(pe) ≤ Lp(C) ≤ 1−
∑
e∈E

pe log2(pe)

• Definition. For a probability distribution p = (pe)e∈E on a countable set
E, the binary entropy of p is

H2(p) := −
∑
e∈E

pe log2(pe)

where we use the convention 0 log 0 = 0. If we replace 2 by Euler’s constant
e = 2.71..., then He(p) = H(p) is the Shannon entropy, or simply the
entropy :

H(p) = −
∑
e∈E

pe log(pe)

Theorem 1. Let p = (pe)e∈E be a probability distribution on a finite alphabet
E. Then for any binary prefix code C = {c(e) : e ∈ E}, we have Lp(C) ≥ H2(p).
Furthermore, there is a binary prefix code C with Lp(C) ≤ H2(p) + 1.

Theorem 2. Let E be a finite set and let p be a probability vector on E. Then
the entropy H(p) is minimal if p = δe for some e ∈ E; that is, if pe′ = 0 if
e′ 6= e, and pe = 1. In this case, H(p) = 0.

On the other hand, H(p) is maximal if pe = 1/#E for every e ∈ E (that is,
p is uniformly distributed). In this case, H(p) = log(#E).

Proving the second theorem is a simple Lagrange multipliers exercise.

Theorem 3 (Shannon). Let E be a finite set, and let X1, X2, . . . : Ω → E
be i.i.d. random variables with P[Xi = e] = pe for every i ≥ 1, so that p =
(pe1 , . . . , peN ) is a probability vector on E. For ω ∈ Ω, define

πn(ω) =

n∏
i=1

pXi(ω)

Then πn(ω) is the probability that the observed sequence X1(ω), . . . , Xn(ω) oc-
curs. Finally let Yn(ω) = − log

(
pXn(ω)

)
, the information after the nth experi-

ment. Then,

− 1

n
log πn =

1

n

n∑
i=1

Yi
n→∞−−−−→ H(p) a.s.

This follows from strong law of large numbers.
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• So how is entropy a measurement of disorder? It becomes clear in these
three theorems.

• The first one shows that H2(p) is a good estimate for the expected com-
plexity of encoded information on an experiment.

• The second one shows that if a certain outcome happens 100% of the
time, then the entropy is 0. But if every outcome is equally likely, and
an experiment is repeated, then we essentially see “randomness” in the
experiment.

• The third one shows that the average information received converges to
the entropy H(p).

• What does this have to do with entropy in physics? Well, if we have a
medium with particles, then we can look at a (finite) number of possible
configurations the particles can take on.

• If all configurations are equally probable, the particles are highly random
and disordered; this is maximal entropy.

3 One-Sided Shifts

• But in particular, we’re interested in probability theory and dynamical
systems.

• We define the Bernoulli shift: Let E be a finite alphabet with probability
vector p = (pe0 , . . . , peN−1

) and let Ω+ := EN0 , and let P be the probability
measure defined on cylinders:

[x0, . . . xn−1] :=
{
ω ∈ Ω+ : ωi = xi ∀0 ≤ i ≤ n− 1

}
so the probability is defined as

P [x0, . . . , xn−1] =

n−1∏
i=0

pei

We can interpret Ω+ as the space of all sequences of experimental out-
comes.

• Say the nth outcome is given by Xn(ω). Then Xn(ω) = ωn is simply the
projection on the nth coordinate.

• However, in dynamical systems, we typically treat a stochastic process like
(Xn)n≥1 instead as a composition of an observable function f : Ω+ → R
with a measurable transformation T : Ω+ → Ω+.
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• In this case, we let T be the shift map:

T (ω)i = ωi+1

That is, T (ω) is the sequence obtained by shifting the sequence ω to the
left by one and chopping off the first letter of the sequence.

• So, if f(ω) := ω1, the coordinate projection Xn can instead be expressed
as Xn = f ◦ Tn.

• In particular, T is a measure-preserving transformation. If we take a
cylinder [x0, . . . , xn−1], then T−1[x0, . . . , xn−1] has measure equal to the
measure of the cylinder:

P
(
T−1[x0, . . . , xn−1]

)
= P

(
N−1∐
i=0

[xi, x1, . . . , xn]

)
=

N−1∑
i=0

pei

n−1∏
j=0

pej =

n−1∏
j=0

pej

= P [x0, . . . , xn−1]

• Most of the important maps of ergodic theory are these: measurable
and measure-preserving transformations. Because the stochastic processes
they generate, Xn = f ◦ Tn, are identically distributed.

4 Metric Entropy of Bernoulli Shift

• For n ∈ N, denote by Pn the probability measure on En given by the
projection of P on EN onto the first n coordinates. That is:

Pn ({e0, . . . , en−1}) := P [e0, . . . , en−1]

Theorem 4. Let E1 and E2 be finite sets with probability vectors p1 and p2.
Let p be a probability vector on the finite set E1×E2 with marginals p1 and p2:∑

e2∈E2

p(e1,e2) = p1e1 ∀e1 ∈ E1 (probability of 1st coordinate being e1)

and ∑
e1∈E1

p(e1,e2) = p2e2 ∀e2 ∈ E2 (probability of 2nd coordinate being e2)

Then H(p) ≤ H(p1) +H(p2).

• In particular, this implies the entropies H(Pm+n), H(Pm), and H(Pn)
for the finite probability spaces Em+n, Em, and En respectively satisfy:

H(Pm+n) ≤ H(Pm) +H(Pn)

• It is an exercise in real analysis that the following limit exists:

h := hP(T ) := lim
n→∞

1

n
H(Pn) = inf

n≥1

1

n
H(Pn)

We call this the entropy of the system.
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5 Metric Entropy in Ergodic Theory

• Now suppose (Ω,A, µ) is a general probability space, and let T : Ω → Ω
be a measurable transformation. Let f : Ω→ R be an observable.

• A collection of measurable subsets ξ = {Ci}i∈I of (Ω,A, µ) is called a

measurable partition if µ(Ci ∩ Cj) = 0 for i 6= j, and µ
(⋃

i∈I Ci
)

= 1.

• We can consider each of these Cis to be one of finitely many outcomes in
an experiment—letters in an alphabet, for example.

• With this interpretation, the entropy of the partition is

H(ξ) = Hµ(ξ) = −
∑
C∈ξ

µ(C) logµ(C)

• What if we want to consider not just events at the first reading of the
experiment, but after a second reading at time 1?

• Well now there are more possibilities: we have to consider the events
right now, but we also have to consider the events of the next stage in
the experiment. That is, we not only consider events C ∈ ξ, but also
T−1(C) ∈ T−1(ξ).

• A measurable partition ξ′ is a refinement of a measurable partition ξ if
µ(C ′i \ Cj) = 0 for every C ′i ∈ ξ′, Cj ∈ ξ; that is, every element of ξ′ is
contained (up to a set of measure 0) in an element of ξ.

• Given two partitions ξ and η, the common refinement ξ ∨ η is the
smallest partition that is a refinement of both ξ and η. That is, the
partition of intersections:

ξ ∨ η := {Ci ∩ Cj : Ci ∈ ξ, Cj ∈ η} .

• In particular, if we consider events that happen both now and will happen
at the next stage, we consider the common refinement of ξ and T−1(ξ):

T−1(ξ) ∨ ξ =
{
T−1(Ci) ∩ Cj : Ci, Cj ∈ ξ

}
• Of course, we can then ask what happens at the stage after the next one,

and take three common refinements (since common refining is obviously
associative and commutative):

T−2(ξ) ∨ T−1(ξ) ∨ ξ =
{
T−2(Ci) ∩ T−1(Cj) ∩ Ck : Ci, Cj , Ck ∈ ξ

}
• And on, and on. As with the one-sided shift, we get:

H
(
ξm+n

)
≤ H (ξm) +H (ξn) , where ξn =

n−1∨
k=0

T−k(ξ)
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whence the following limit exists:

hµ(T, ξ) := lim
n→∞

1

n
Hµ

(
n−1∨
k=0

T−k(ξ)

)

• That’s the entropy of T with respect to the partition ξ. And it looks confus-
ing, but actually it’s surprisingly simple: it’s the long-term asymptotically
observed disorder after repeating an experiment while observing a finite
number of possible outcomes.

• But a partition ξ is generally not part of the structure of a dynamical
system. So there’s one more step in the construction of entropy. This is
to eliminate the consideration of a partition altogether.

• Definition. The Kolmogorov-Sinai Entropy (a.k.a. the metric entropy)
of the measure-preserving dynamical system (Ω,A, µ, T ) is

hµ(T ) = sup
ξ
hµ(T, ξ),

where the supremum is over all finite measurable partitions of Ω.
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