Entropy-A Concrete Introduction Student-Directed Colloquium 4/24/2019

1 Information

- Before talking about entropy, we need to answer a different question: how to quantify information.
- If we do an experiment, and the experiment has n possible outcomes, each with probability p_{i}, how much information do we gain if outcome i occurs?
- Example: The first letter of a word is X. How much information do we have about this word? What if the first letter is T?
- Suppose we have a finite alphabet $E=\left\{e_{1}, \ldots, e_{N}\right\}$, and X_{1}, X_{2}, \ldots are i.i.d. random variables with values in E.
- Recall this means X_{i} are measurable functions from a probability space (Ω, \mathbb{P}) to E. For example, we could have $\Omega=E^{\mathbb{N}}$.
- Suppose $\mathbb{P}\left[X_{i}=e\right]=p_{e}$ for each $e \in E$. Let $p=\left(p_{e_{1}}, \ldots, p_{e_{N}}\right)$ be the probability distribution vector for E.
- Question: How do we determine the amount of information encoded in the outcome $X_{1}(\omega), X_{2}(\omega), \ldots, X_{n}(\omega) \in E$?
- One way we can do this is say a computer is storing this information for us. How should we program the computer to store each piece of information in the letter e_{i} ?
- Associate to each letter $e \in E$ a short string of 0 s and 1 s. Then the string $e_{1}, \ldots e_{n}$ becomes a string of 0 s and 1 s .
- Let's think about what we want for this code:

1. More probable letters should have fewer digits. This economizes on storage: if we have higher-probability events with too long strings, our storage will fill up faster. (Consider Morse code: the letters e and t are \cdot and - , but q is $--\cdot-)$.
2. Our code needs to be translatable from binary back into something useful. So no code for a letter can also be the beginning of another code.

- Example: If S is encoded with 0110, we can't encode L with 011011. Since as a computer translates, we want the computer to know when it reaches the end of a letter. Imagine if we also encoded H with 11. Then Ana might try texting Caitlin "Dom's talk is lit", but Caitlin's phone may render this as "Dom's talk is shit"!
- The latter condition makes this a binary prefix code, and is actually how computers transcribe letters to binary and back.
- Let $\ell(e)$ be the length of the code for the letter e, and let $c(e) \in\{0,1\}^{\ell(e)}$ be the code of e. Let

$$
C=\{c(e): e \in E\} \subseteq \coprod_{k=1}^{\# E}\{0,1\}^{k}
$$

be the binary code for the alphabet E.

- The first condition in this list can be achieved by minimizing the expected length of the code of a random symbol:

$$
L_{p}(C):=\int_{E} \ell d p=\sum_{e \in E} p_{e} \ell(e)
$$

- NOW, we're going to construct a specific code, and show that it's almost optimal.
- Assume E is enumerated so that $p_{e_{1}} \geq p_{e_{2}} \geq \cdots \geq p_{e_{N}}$.
- Define $\lambda: E \rightarrow \mathbb{N}$ so that $2^{-\lambda(e)} \leq p_{e}<2^{-\lambda(e)+1}$.
- Also define $\widetilde{p}_{e}=2^{-\lambda(e)}$ and $\widetilde{q}_{k}=\sum_{j<k} \widetilde{p}_{e_{j}}$.
- Then $\lambda\left(e_{m}\right) \leq \lambda\left(e_{k}\right) \forall m \leq k$. So the binary representation of the number \widetilde{q}_{k} has at most $\lambda\left(e_{k}\right)$ digits:

$$
\widetilde{q}_{k}=\sum_{i=1}^{\lambda\left(e_{k}\right)} c_{i}\left(e_{k}\right) 2^{-i}
$$

for uniquely determined $c_{1}\left(e_{k}\right), \ldots, c_{\lambda\left(e_{k}\right)}\left(e_{k}\right) \in\{0,1\}$. Indeed, the smallest power of $1 / 2$ that is used in the construction of \widetilde{q}_{k} is $2^{-\lambda\left(e_{k-1}\right)}$.

- Observe also that $\widetilde{q}_{m} \geq \widetilde{q}_{k}+2^{-\lambda\left(e_{k}\right)}$ for $m>k$. So,

$$
\left(c_{1}\left(e_{k}\right), \ldots, c_{\lambda\left(e_{k}\right)}\left(e_{k}\right)\right) \neq\left(c_{1}\left(e_{m}\right), \ldots, c_{\lambda\left(e_{k}\right)}\left(e_{m}\right)\right)
$$

Indeed, adding another term of $2^{-\lambda\left(e_{k}\right)}$ would cascade a change in preceding digits c_{i}.

- UPSHOT: The code $C=\{c(e): e \in E\}$ is a prefix code, where $c(e)=$ $\left(c_{1}(e), \ldots, c_{\lambda(e)}(e)\right)$. The length of each code is thus $\ell(e)=\lambda(e)$.

2 Information Entropy

- Now, recall $2^{-\ell(e)} \leq p_{e}<2^{-\ell(e)+1}$. So, $-\ell(e) \leq \log _{2}\left(p_{e}\right)<-\ell(e)+1$, or $-\log _{2}\left(p_{e}\right) \leq \ell(e) \leq 1-\log _{2}\left(p_{e}\right)$.
- So the expected length is bounded in the following way:

$$
-\sum_{e \in E} p_{e} \log _{2}\left(p_{e}\right) \leq L_{p}(C) \leq 1-\sum_{e \in E} p_{e} \log _{2}\left(p_{e}\right)
$$

- Definition. For a probability distribution $p=\left(p_{e}\right)_{e \in E}$ on a countable set E, the binary entropy of p is

$$
H_{2}(p):=-\sum_{e \in E} p_{e} \log _{2}\left(p_{e}\right)
$$

where we use the convention $0 \log 0=0$. If we replace 2 by Euler's constant $e=2.71 \ldots$, then $H_{e}(p)=H(p)$ is the Shannon entropy, or simply the entropy:

$$
H(p)=-\sum_{e \in E} p_{e} \log \left(p_{e}\right)
$$

Theorem 1. Let $p=\left(p_{e}\right)_{e \in E}$ be a probability distribution on a finite alphabet E. Then for any binary prefix code $C=\{c(e): e \in E\}$, we have $L_{p}(C) \geq H_{2}(p)$. Furthermore, there is a binary prefix code C with $L_{p}(C) \leq H_{2}(p)+1$.

Theorem 2. Let E be a finite set and let p be a probability vector on E. Then the entropy $H(p)$ is minimal if $p=\delta_{e}$ for some $e \in E$; that is, if $p_{e^{\prime}}=0$ if $e^{\prime} \neq e$, and $p_{e}=1$. In this case, $H(p)=0$.

On the other hand, $H(p)$ is maximal if $p_{e}=1 / \# E$ for every $e \in E$ (that is, p is uniformly distributed). In this case, $H(p)=\log (\# E)$.

Proving the second theorem is a simple Lagrange multipliers exercise.
Theorem 3 (Shannon). Let E be a finite set, and let $X_{1}, X_{2}, \ldots: \Omega \rightarrow E$ be i.i.d. random variables with $\mathbb{P}\left[X_{i}=e\right]=p_{e}$ for every $i \geq 1$, so that $p=$ $\left(p_{e_{1}}, \ldots, p_{e_{N}}\right)$ is a probability vector on E. For $\omega \in \Omega$, define

$$
\pi_{n}(\omega)=\prod_{i=1}^{n} p_{X_{i}(\omega)}
$$

Then $\pi_{n}(\omega)$ is the probability that the observed sequence $X_{1}(\omega), \ldots, X_{n}(\omega)$ occurs. Finally let $Y_{n}(\omega)=-\log \left(p_{X_{n}(\omega)}\right)$, the information after the $n^{\text {th }}$ experiment. Then,

$$
-\frac{1}{n} \log \pi_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{n \rightarrow \infty} H(p) \quad \text { a.s. }
$$

This follows from strong law of large numbers.

- So how is entropy a measurement of disorder? It becomes clear in these three theorems.
- The first one shows that $H_{2}(p)$ is a good estimate for the expected complexity of encoded information on an experiment.
- The second one shows that if a certain outcome happens 100% of the time, then the entropy is 0 . But if every outcome is equally likely, and an experiment is repeated, then we essentially see "randomness" in the experiment.
- The third one shows that the average information received converges to the entropy $H(p)$.
- What does this have to do with entropy in physics? Well, if we have a medium with particles, then we can look at a (finite) number of possible configurations the particles can take on.
- If all configurations are equally probable, the particles are highly random and disordered; this is maximal entropy.

3 One-Sided Shifts

- But in particular, we're interested in probability theory and dynamical systems.
- We define the Bernoulli shift: Let E be a finite alphabet with probability vector $p=\left(p_{e_{0}}, \ldots, p_{e_{N-1}}\right)$ and let $\Omega^{+}:=E^{\mathbb{N}_{0}}$, and let \mathbb{P} be the probability measure defined on cylinders:

$$
\left[x_{0}, \ldots x_{n-1}\right]:=\left\{\omega \in \Omega^{+}: \omega_{i}=x_{i} \forall 0 \leq i \leq n-1\right\}
$$

so the probability is defined as

$$
\mathbb{P}\left[x_{0}, \ldots, x_{n-1}\right]=\prod_{i=0}^{n-1} p_{e_{i}}
$$

We can interpret Ω^{+}as the space of all sequences of experimental outcomes.

- Say the $n^{\text {th }}$ outcome is given by $X_{n}(\omega)$. Then $X_{n}(\omega)=\omega_{n}$ is simply the projection on the $n^{\text {th }}$ coordinate.
- However, in dynamical systems, we typically treat a stochastic process like $\left(X_{n}\right)_{n \geq 1}$ instead as a composition of an observable function $f: \Omega^{+} \rightarrow \mathbb{R}$ with a measurable transformation $T: \Omega^{+} \rightarrow \Omega^{+}$.
- In this case, we let T be the shift map:

$$
T(\omega)_{i}=\omega_{i+1}
$$

That is, $T(\omega)$ is the sequence obtained by shifting the sequence ω to the left by one and chopping off the first letter of the sequence.

- So, if $f(\omega):=\omega_{1}$, the coordinate projection X_{n} can instead be expressed as $X_{n}=f \circ T^{n}$.
- In particular, T is a measure-preserving transformation. If we take a cylinder $\left[x_{0}, \ldots, x_{n-1}\right]$, then $T^{-1}\left[x_{0}, \ldots, x_{n-1}\right]$ has measure equal to the measure of the cylinder:

$$
\begin{aligned}
\mathbb{P}\left(T^{-1}\left[x_{0}, \ldots, x_{n-1}\right]\right) & =\mathbb{P}\left(\coprod_{i=0}^{N-1}\left[x_{i}, x_{1}, \ldots, x_{n}\right]\right)=\sum_{i=0}^{N-1} p_{e_{i}} \prod_{j=0}^{n-1} p_{e_{j}}=\prod_{j=0}^{n-1} p_{e_{j}} \\
& =\mathbb{P}\left[x_{0}, \ldots, x_{n-1}\right]
\end{aligned}
$$

- Most of the important maps of ergodic theory are these: measurable and measure-preserving transformations. Because the stochastic processes they generate, $X_{n}=f \circ T^{n}$, are identically distributed.

4 Metric Entropy of Bernoulli Shift

- For $n \in \mathbb{N}$, denote by P_{n} the probability measure on E^{n} given by the projection of \mathbb{P} on $E^{\mathbb{N}}$ onto the first n coordinates. That is:

$$
P_{n}\left(\left\{e_{0}, \ldots, e_{n-1}\right\}\right):=\mathbb{P}\left[e_{0}, \ldots, e_{n-1}\right]
$$

Theorem 4. Let E^{1} and E^{2} be finite sets with probability vectors p^{1} and p^{2}. Let p be a probability vector on the finite set $E^{1} \times E^{2}$ with marginals p^{1} and p^{2} :

$$
\sum_{e^{2} \in E^{2}} p_{\left(e^{1}, e^{2}\right)}=p_{e^{1}}^{1} \quad \forall e^{1} \in E^{1} \quad\left(\text { probability of } 1 \text { st coordinate being } e^{1}\right)
$$

and

$$
\left.\sum_{e^{1} \in E^{1}} p_{\left(e^{1}, e^{2}\right)}=p_{e^{2}}^{2} \quad \forall e^{2} \in E^{2} \quad \text { (probability of 2nd coordinate being } e^{2}\right)
$$

Then $H(p) \leq H\left(p^{1}\right)+H\left(p^{2}\right)$.

- In particular, this implies the entropies $H\left(P^{m+n}\right), H\left(P^{m}\right)$, and $H\left(P^{n}\right)$ for the finite probability spaces E^{m+n}, E^{m}, and E^{n} respectively satisfy:

$$
H\left(P^{m+n}\right) \leq H\left(P^{m}\right)+H\left(P^{n}\right)
$$

- It is an exercise in real analysis that the following limit exists:

$$
h:=h_{\mathbb{P}}(T):=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(P^{n}\right)=\inf _{n \geq 1} \frac{1}{n} H\left(P^{n}\right)
$$

We call this the entropy of the system.

5 Metric Entropy in Ergodic Theory

- Now suppose $(\Omega, \mathcal{A}, \mu)$ is a general probability space, and let $T: \Omega \rightarrow \Omega$ be a measurable transformation. Let $f: \Omega \rightarrow \mathbb{R}$ be an observable.
- A collection of measurable subsets $\xi=\left\{C_{i}\right\}_{i \in I}$ of $(\Omega, \mathcal{A}, \mu)$ is called a measurable partition if $\mu\left(C_{i} \cap C_{j}\right)=0$ for $i \neq j$, and $\mu\left(\bigcup_{i \in I} C_{i}\right)=1$.
- We can consider each of these C_{i} s to be one of finitely many outcomes in an experiment-letters in an alphabet, for example.
- With this interpretation, the entropy of the partition is

$$
H(\xi)=H_{\mu}(\xi)=-\sum_{C \in \xi} \mu(C) \log \mu(C)
$$

- What if we want to consider not just events at the first reading of the experiment, but after a second reading at time 1 ?
- Well now there are more possibilities: we have to consider the events right now, but we also have to consider the events of the next stage in the experiment. That is, we not only consider events $C \in \xi$, but also $T^{-1}(C) \in T^{-1}(\xi)$.
- A measurable partition ξ^{\prime} is a refinement of a measurable partition ξ if $\mu\left(C_{i}^{\prime} \backslash C_{j}\right)=0$ for every $C_{i}^{\prime} \in \xi^{\prime}, C_{j} \in \xi$; that is, every element of ξ^{\prime} is contained (up to a set of measure 0) in an element of ξ.
- Given two partitions ξ and η, the common refinement $\xi \vee \eta$ is the smallest partition that is a refinement of both ξ and η. That is, the partition of intersections:

$$
\xi \vee \eta:=\left\{C_{i} \cap C_{j}: C_{i} \in \xi, C_{j} \in \eta\right\}
$$

- In particular, if we consider events that happen both now and will happen at the next stage, we consider the common refinement of ξ and $T^{-1}(\xi)$:

$$
T^{-1}(\xi) \vee \xi=\left\{T^{-1}\left(C_{i}\right) \cap C_{j}: C_{i}, C_{j} \in \xi\right\}
$$

- Of course, we can then ask what happens at the stage after the next one, and take three common refinements (since common refining is obviously associative and commutative):

$$
T^{-2}(\xi) \vee T^{-1}(\xi) \vee \xi=\left\{T^{-2}\left(C_{i}\right) \cap T^{-1}\left(C_{j}\right) \cap C_{k}: C_{i}, C_{j}, C_{k} \in \xi\right\}
$$

- And on, and on. As with the one-sided shift, we get:

$$
H\left(\xi^{m+n}\right) \leq H\left(\xi^{m}\right)+H\left(\xi^{n}\right), \quad \text { where } \quad \xi^{n}=\bigvee_{k=0}^{n-1} T^{-k}(\xi)
$$

whence the following limit exists:

$$
h_{\mu}(T, \xi):=\lim _{n \rightarrow \infty} \frac{1}{n} H_{\mu}\left(\bigvee_{k=0}^{n-1} T^{-k}(\xi)\right)
$$

- That's the entropy of T with respect to the partition ξ. And it looks confusing, but actually it's surprisingly simple: it's the long-term asymptotically observed disorder after repeating an experiment while observing a finite number of possible outcomes.
- But a partition ξ is generally not part of the structure of a dynamical system. So there's one more step in the construction of entropy. This is to eliminate the consideration of a partition altogether.
- Definition. The Kolmogorov-Sinai Entropy (a.k.a. the metric entropy) of the measure-preserving dynamical system $(\Omega, \mathcal{A}, \mu, T)$ is

$$
h_{\mu}(T)=\sup _{\xi} h_{\mu}(T, \xi)
$$

where the supremum is over all finite measurable partitions of Ω.

