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Notation

A probability space is a triple (Ω,A,P), where A is a σ-algebra
of events and P : A → [0, 1] is a measure.

A random variable is a measurable function X : Ω→ R.

We denote by E[X ] =

∫
Ω
X dP the expectation or expected

value of the random variable X .

A stochastic process is a collection {Xi}i∈I of random variables,
where I is some index set. If I = Z, then the stochastic process is
discrete, and if I = R, then the stochastic process is continuous.



Independence and the Weak Law of Large Numbers

Let {Xn}n≥1 be a discrete stochastic process (i.e. a sequence of

random variables). Denote by S̃n =
∑n

i=1 (Xi − E[Xi ]).

The sequence of random variables satisfies the weak law of large
numbers (WLLN) if for every ε > 0:

lim
n→∞

P
[∣∣∣∣1n S̃n

∣∣∣∣ > ε

]
= 0

That is, the probability of the average difference being greater than
ε approaches 0 for sufficiently many experimental iterations.

The sequence is independent if the outcome of one experiment
has no effect on the outcome of future or past experiments.



Simple example: Bernoulli processes

Suppose your experiment is a game, with n distinct outcomes,
each with probability pk of occurring, independent of preceding
events. (Note, for example, that p1 + · · ·+ pn = 1.)

We call this a Bernoulli process: a sequence of random variables
X1,X2, . . ., with P[Xi = k] = pk regardless of which time i we play
the game/perform the experiment, and regardless of whatever has
happened previously. (Certainly you hope most casino games
adhere to this principle).

Consider a coin toss or Roulette table. The WLLN says, for
example, that the probability of a sequence of coin tosses coming
up heads more than 50.01% of the time approaches 0 the more
tosses you make.



A Challenge to Markov

Pavel Nekrasov: “If a sequence
of random variables satisfies the
weak law of large numbers, the se-
quence is independent.”

Andrey Markov: “...Is it tho?”



Early Example: Probability in Poetry

Markov looked at sequences of letters in Russian poetry. Even
though some letters occur more than others, the probability
changed depending on what letter preceded it.

English example: The letter u has a relative frequency in English
of 2.88%. If you consider a string of letters in sequence in a piece
of English writing, the probability of a given letter being u is
approximately 0.0288.

However, if you look at the probability of a letter being u, and you
know the letter preceding it, that probability changes—for example,
the probability of a u occurring following a q is much higher!

This sequence of random variables is clearly not independent.
However, it does satisfy the weak law of large numbers!



Pushkin’s vowels and consonants

Markov compiled the first 20,000 letters of Pushkin’s Eugene
Onegin into a string of characters and counted the total number of
vowels (8,638) and consonants (11,362).

Markov then combed through the string and looked for successive
vowel-vowel pairs. He found 1,104 double-vowels and 3,827
double-consonants.

If this sequence of lettters were independent, since vowels appear
approximately 43% of the time, we’d expect the probability of
having double-vowels be (0.43)2 ≈ 0.19, yielding 3,731 double
vowels—over 3× the actual number of double-vowels!



Modern Probability Definition

Let E ⊆ R, and suppose X = {Xt}t∈I is a stochastic process,
where I ⊆ [0,∞) is closed under addition.

X is a Markov process (or a Markov chain if I = N0) if, for
every measurable A ⊂ E and every r , s, t ∈ I with r < s < t, we
have:

P
[
Xt ∈ A | {Xq}r≤q≤s

]
= P [Xt ∈ A | Xs ]

In other words, the outcome of experiment t, given knowledge of
experiment s, has the same probability distribution as one would
have given knowledge of all experiments preceding and including s.
This is often called memorylessness.



Stochastic Matrices

Suppose you conduct an experiment with n possible outcomes, and
the probability of going to state j from state i is pij . These
probabilities can be assembled in a stochastic matrix. Observe that
if you go from any state i ,

pi1 + pi2 + · · ·+ pin = 1

A stochastic matrix (sometimes Markov matrix) is a square
matrix Π = (pij)1≤i ,j≤n of nonnegative entries whose sum of the
entries in each row is equal to 1: pi1 + · · ·+ pin = 1.



Stochastic Matrices in Markov Chains

Why a matrix? Suppose we want to know the probability of going
to state j in two iterations, if we’re currently at state i . Then:

P [X`+2 = j | Xn = i ] =
n∑

k=1

P [(X`+2 = j) ∩ (X`+1 = k) | X` = i ]

=
n∑

k=1

P [X`+2 = j | X`+1 = k ,X` = i ]

× P [X`+1 = k | X` = i ]

=
n∑

k=1

P [X`+2 = j | X`+1 = k]

× P [X`+1 = k | X` = i ]

=
n∑

k=1

pkjpik =
(
Π2
)
ij



Meteorology

Question. If we know the weather today, what is the probability
distribution of possible weather behaviors tomorrow?

Obviously the weather today impacts the weather tomorrow. This
is often worked out using a Markov graph, whose edges have
different weights, described in a stochastic matrix:



Higher-Order Markov Chains

What if in fact outcome ` depends not only on where you are at
step `− 1, but from where you are at step `− 2 also? (Consider
letters: the probability of s appearing in an English word is 0.0628,
but this increases if it’s preceded by u—and increases further if
preceded by ou.)

An Markov chain of order m with values in E ⊆ R is a discrete
stochastic process {X`}`≥1 where for every measurable A ⊂ E ,
every ` ≥ 1, and every 0 ≤ k ≤ `−m,

P
[
X` ∈ A | {Xj}k≤j≤`−1

]
= P

[
X` ∈ A | {Xj}`−m≤j≤`−1

]
Here, the probability of the next step depends on where you
currently are, and where you were for the past m − 1 steps.



Drivel me this...



Topological Markov Chains

In probability theory, we often forget the underlying measure space
(Ω,A,P).

A dynamical system is a measure space (Ω,A, µ) or a metric
space (Ω, d), with a map T : Ω→ Ω, typically either continuous,
measurable, smooth, etc.

A (dynamical) Markov chain is a dynamical system with
Ω = {1, . . . , n}Z, and symbolic metric

d(ω1, ω2) = 2−min{|k|ωk
1 6=ωk

2}

with map T : Ω→ Ω defined by T (ω)k = ωk+1.

A topological Markov chain is a closed subset of Ω invariant
under the map T .
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