Hyperbolic Dynamics

Basic examples and current settings

Dom Veconi
Penn State University
Student Dynamics Seminar
January 102018

Introduction

Definition

- A (discrete) dynamical system is a pair (X, f), with X a set of points (almost always either a topological space or a measure space), and $f: X \rightarrow X$ a map (almost always either continuous or measurable, depending on the structure of X).
- Given $x \in X$, the forward orbit of x is the set $\mathcal{O}^{+}(x)=\left\{f^{n}(x): n \in \mathbb{N}_{0}\right\}$. If f is invertible, the full orbit (or just the orbit) is the set $\mathcal{O}(x)=\left\{f^{n}(x): n \in \mathbb{Z}\right\}$.
- A point $x \in X$ is periodic if $f^{n}(x)=x$ for some $n \geq 1$ (in which case we say x has period n, or x is n-periodic). A point $x \in X$ is fixed if $f(x)=x$.

Example: Angle Doubling

Let $X=\mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$, and let $f=E_{2}: x \mapsto=2 x(\bmod 1)$.
Properties:

- "Chaotic": Points that are arbitrarily close together become far apart after sufficiently many iterations
- Periodic points of E_{2} are dense in \mathbb{S}^{1}
- Topologically transitive: there is a point $x \in \mathbb{S}^{1}$ with a dense forward orbit.
- Measure-preserving with respect to Lebesgue measure: $\lambda(A)=\lambda\left(E_{2}^{-1}(A)\right)$.
Two orbits:
- $\mathcal{O}^{+}(0.11)=\{0.11,0.22,0.44,0.88,0.76,0.52,0.04, \ldots\}$
- $\mathcal{O}^{+}(0.12)=\{0.12,0.24,0.48,0.96,0.92,0.84,0.68, \ldots\}$

Example: 2-Shift

Let $X=\Omega_{2}^{+}=\{0,1\}^{\mathbb{N}_{0}}$, and let $f=\sigma: \Omega_{2}^{+} \rightarrow \Omega_{2}^{+}$be defined by $\sigma(\omega)_{i}=\omega_{i+1}$ (ie. the sequence ω gets shifted to the left by 1 , and the $0^{\text {th }}$ letter gets deleted).

Metric on Ω_{2}^{+}:

$$
d\left(\omega, \omega^{\prime}\right)=2^{-\min \left\{i: \omega_{i} \neq \omega_{i}^{\prime}\right\}}
$$

Open balls in Ω_{2}^{+}are cylinders: for $\alpha_{0}, \ldots, \alpha_{n} \in\{0,1\}$:

$$
C_{\alpha_{0} \ldots \alpha_{n}}=\left\{\omega \in \Omega_{2}^{+}: \omega_{i}=\alpha_{i} \forall 0 \leq i \leq n\right\}
$$

General cylinders: for $\alpha_{0}, \ldots, \alpha_{n} \in\{0,1\}$ and nonnegative integers $j_{0}<j_{1}<\cdots<j_{n}$:

$$
C_{\alpha_{0} \ldots \alpha_{n}}^{j_{0} \ldots j_{n}}=\left\{\omega \in \Omega: \omega_{j_{k}}=\alpha_{j_{k}} \forall 0 \leq k \leq n\right\}
$$

Example: 2-shift

Orbit example:

$$
\begin{aligned}
\omega & =00011100001010001111 \ldots, \\
\sigma(\omega) & =0011100001010001111 \ldots \\
\sigma^{2}(\omega) & =011100001010001111 \ldots \\
\sigma^{3}(\omega) & =11100001010001111 \ldots \\
\sigma^{4}(\omega) & =1100001010001111 \ldots
\end{aligned}
$$

Easy to show σ is continuous.

Factors, conjugacies, and isomorphisms

Definition

- Suppose (X, f) and (Y, g) are topological dynamical systems, and $h: X \rightarrow Y$ is a surjective continuous map so that $h \circ f=g \circ h$. Then (Y, g) is a topological factor of (X, f). If h is a homeomorphism, then (X, f) and (Y, g) are topologically conjugate.
- Suppose (X, f) and (Y, g) are measurable dynamical systems, with X and Y finite-measure, and $h: X \rightarrow Y$ is a measurable and measure-preserving map that restricts to a bijection $X^{\prime} \rightarrow Y^{\prime}$, with $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$ full-measure, so that $h \circ f=g \circ h$. Then (X, f) and (Y, g) are measure-theoretically isomorphic (or just isomorphic if the context is clear).

Angle doubling and 2-shift

Suppose we express the angle doubling map as doubling numbers expressed in binary:

$$
\begin{aligned}
& 0.11=0.00011100001010001111 \ldots 2 \\
& E_{2}(0.11)=0.22=0.0011100001010001111 \ldots 2 \\
& E_{2}^{2}(0.11)=0.44=0.011100001010001111 \ldots 2 \\
& E_{2}^{3}(0.11)=0.88=0.11100001010001111 \ldots 2 \\
& E_{2}^{4}(0.11)=0.76=0.1100001010001111 \ldots 2
\end{aligned}
$$

Comparing this to the example orbit from 2 slides ago, the formal string of 0 s and 1 s are the same!

Angle doubling and 2-shift

Define $h: \Omega_{2}^{+} \rightarrow \mathbb{S}^{1}$ sending $\omega=\omega_{0} \omega_{1} \omega_{2} \ldots \mapsto 0 . \omega_{0} \omega_{1} \omega_{2} \ldots 2$. With the topology on Ω_{2}^{+}, h is surjective and continuous, and as we saw, $h \circ E_{2}=\sigma \circ h$. So $\left(\mathbb{S}^{1}, E_{2}\right)$ is a factor of $\left(\Omega_{2}^{+}, \sigma\right)$.
Let $\mu: \mathcal{B}\left(\Omega_{2}^{+}\right) \rightarrow[0,1]$ be determined by

$$
\mu\left(C_{\alpha_{0} \ldots \alpha_{n}}^{j_{0} \ldots j_{n}}\right)=2^{-n}
$$

Then μ is an example of a Bernoulli probability measure on Ω_{2}^{+}.
Let $X^{\prime} \subseteq \Omega_{2}^{+}$be the set of strings in Ω_{2}^{+}that do not end in a tail of all 0 s or all 1 s . Since μ is non-atomic and X^{\prime} is countable, $\mu\left(X^{\prime}\right)=0$. Note $\lambda\left(h\left(X^{\prime}\right)\right)=0$.

Can show h is measurable and measure-preserving, so $\left(\mathbb{S}^{1}, E_{2}\right)$ and $\left(\Omega_{2}^{+}, \sigma\right)$ are measure-theoretically isomorphic.

Setting of Hyperbolic Dynamics

Suppose M is an n-dimensional $(n \geq 2) C^{1}$ Riemannian manifold (ie. the tangent vector space at each point $x \in M$ has an inner product, and this inner product varies smoothly over M).

Now suppose $f: M \rightarrow M$ is a C^{r} local diffeomorphism for some $r \geq 1$ (meaning for every $x \in M$, there is an open neighborhood $U \subset M$ so that $\left.f\right|_{U}: U \rightarrow f(U)$ is a diffeomorphism).

Hyperbolic Sets

Definition

Let $U \subset M$ be open so that $f: U \rightarrow f(U)$ is a diffeomorphism. A compact f-invariant set $\Lambda \subset U$ is a hyperbolic set if there is a $\lambda \in(0,1), C>0$, and a splitting $T_{x} M=E^{s}(x) \oplus E^{u}(x)$ at each tangent plane for $x \in \Lambda$ so that:
(1) $\left\|D f_{x}^{n} v\right\| \leq C \lambda^{n}\|v\|$ for every $v \in E^{s}(x), n \geq 0$;
(2) $\left\|D f_{x}^{-n} v\right\| \leq C \lambda^{n}\|v\|$ for every $v \in E^{u}(x), n \geq 0$;
(3) $D f_{x}\left(E^{s}(x)\right)=E^{s}(f(x))$ and $D f_{x}\left(E^{u}(x)\right)=E^{u}(f(x))$.

NOTE: Λ may not be a submanifold of M (often not locally homeomorphic to \mathbb{R}^{n} at any point $x \in \Lambda$).

Smale Horseshoe

Let $S \subset \mathbb{R}^{2}$ be a square with two sides capped by half discs, and $f: S \rightarrow S$ a diffeomorphism onto its image, stretching S vertically, contracting horizontally, and folding in half, like so:

Notice only B and D have images intersecting the central square. So if a point is to remain in the square, it has to always stay inside of sets B and D.

Smale Horseshoe

Iterating the horseshoe map $f: S \rightarrow S$ forward twice more, we get a progressively more "coiled" horseshoe.

Taking preimage $f^{-1}(B)$, we get two thin horizontal rectangles: one inside B, and one inside D. Ditto $f^{-1}(D)$.

Smale Horseshoe

The intersection of all forward images of B and D form a Cantor set, as does the intersection of all preimages.
The resulting set $\Lambda=\bigcap_{n=-\infty}^{\infty} f^{n}(B) \cup f^{n}(D)$ is a product of Cantor sets, and a hyperbolic set in S. Note $f: \Lambda \rightarrow \Lambda$ is a bijection.

Smale Horseshoe

In the case of the horseshoe, the contracting directions $E^{s}(x)$ are horizontal lines at each point (notice if two points in Λ share a horizontal coordinate, they grow closer together), and the expanding directions $E^{u}(x)$ are vertical lines (if two points share a vertical coordinate, they grow closer together in backwards time).

Smale Horseshoe

Much like the expanding map $E_{2}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$, the horseshoe $f: \Lambda \rightarrow \Lambda$ can be encoded into a symbolic system: the full shift $\Omega_{2}:=\{0,1\}^{\mathbb{Z}}$, with map $\sigma: \Omega_{2} \rightarrow \Omega_{2}$ given by $\sigma(\omega)_{i}=\omega_{i+1}$.

In this example, p has symbolic representation $\cdots 000 \cdots$, s has symbolic representation $\cdots 111 \cdots$, and r has symbolic representation $\cdots 00100 \cdots$. (p stays in B and s stays in D, but r is in D once and otherwise stays in B.)

Smale Solenoid

Let $M=\mathbb{S}^{1} \times \mathbb{D}^{2}$: the solid torus. Define the map $f: M \rightarrow M$ by

$$
f(\varphi, x, y)=\left(2 \varphi, \alpha x+\frac{1}{2} \cos 2 \pi \varphi, \alpha y+\frac{1}{2} \sin 2 \pi \varphi\right)
$$

for some fixed $\alpha \in(0,1 / 2)$. Then f is a diffeomorphism onto its image, a solid torus stretched by a factor of 2 , contracted by a factor of α, and twisted inside the original solid torus:

Smale Solenoid

The closed invariant set $\Lambda=\bigcap_{n \geq 1} f^{n}(M)$ is known as the Smale-Williams solenoid. Note $\bar{f} \bar{\Lambda}_{\Lambda}: \Lambda \rightarrow \Lambda$ is bijective.

The solenoid is a hyperbolic set, in fact a hyperbolic attractor (meaning the orbit of every point $p \in M$ approaches a sequence of points in Λ, i.e. $\left.d\left(f^{n}(p), \Lambda\right) \rightarrow 0\right)$.

Locally, the solenoid is a product of a Cantor set with an open interval.

The stable subspaces $E^{s}(p)$ are parallel to the 2-dimensional cross-sectional discs of M.

The unstable subspaces $E^{u}(p)$ are along the "open intervals" in the local product structure of Λ.

Analyzing the solenoid

Define $\Phi=\left\{\left(\varphi_{n}\right)_{n=0}^{\infty} \in\left(\mathbb{S}^{1}\right)^{\mathbb{N}_{0}}: \varphi_{i}=2 \varphi_{i+1}(\bmod 1)\right\}$. Then Φ is a closed subgroup of the additive topological group $\left(\mathbb{S}^{1}\right)^{\mathbb{N}_{0}}$.

The map $\alpha: \Phi \rightarrow \Phi$ given by $\alpha\left(\varphi_{0}, \varphi_{1}, \ldots\right)=\left(2 \varphi_{0}, \varphi_{0}, \varphi_{1}, \ldots\right)$ is a group automorphism and a homeomorphism.

Given $p \in \Lambda$, the first (angular) coordinates of the preimages $f^{-n}(p)=\left(\varphi_{n}, x_{n}, y_{n}\right)$ form a sequence $h(p)=\left(\varphi_{n}\right)_{n=0}^{\infty} \in \Phi$.

One can show $h: \Lambda \rightarrow \Phi$ is a homeomorphism, and $h \circ f=\alpha \circ h$. Thus (Φ, α) and (Λ, f) are topologically conjugate.

Hyperbolic Toral Automorphisms

Let $M=\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, and let
$F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the action of A on \mathbb{R}^{2}.
Since $\operatorname{det}(A)=1, F\left(\mathbb{Z}^{2}\right)=\mathbb{Z}^{2}$, so F descends to a well-defined $\operatorname{map} f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$, known as a hyperbolic toral automorphism.

Generally, if $A \in \mathrm{SL}(n, \mathbb{Z})$ has no eigenvalues on the unit circle, then $f_{A}: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ is a hyperbolic toral automorphism.

Hyperbolic Toral Automorphisms

Eigenvalues of $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$:

- $\lambda=(3+\sqrt{5}) / 2>1$, in direction of $v_{\lambda}:=((1+\sqrt{5}) / 2,1)$
- $1 / \lambda$, in direction of $v_{1 / \lambda}:=((1-\sqrt{5}) / 2,1)$

Hyperbolic Toral Automorphisms

Note $d f_{p}: T_{p} \mathbb{T}^{2} \rightarrow T_{f(p)} \mathbb{T}^{2}$ has matrix expression $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Identify $T_{p} \mathbb{T}^{2}$ with \mathbb{R}^{2} at every $p \in \mathbb{T}^{2}$; then $E^{s}(p)$ and $E^{u}(p)$ are the eigenspaces spanned by $v_{1 / \lambda}$ and v_{λ} respectively.

Thus all of \mathbb{T}^{2} is a hyperbolic set.
If $f: M \rightarrow M$ is a diffeomorphism of a Riemannian manifold for which all of M is hyperbolic, then f is known as an Anosov diffeomorphism. Hyperbolic toral automorphisms are examples of Anosov diffeomorphisms.

Adapted Metrics

Recall definition of a hyperbolic set $\Lambda \subset M$:

Definition

Let $U \subset M$ be open so that $f: U \rightarrow f(U)$ is a diffeomorphism. A compact f-invariant set $\Lambda \subset U$ is a hyperbolic set if there is a $\lambda \in(0,1), C>0$, and a splitting $T_{x} M=E^{s}(x) \oplus E^{u}(x)$ at each tangent plane for $x \in \Lambda$ so that:
(1) $\left\|D f_{x}^{n} v\right\| \leq C \lambda^{n}\|v\|$ for every $v \in E^{s}(x), n \geq 0$;
(2) $\left\|D f_{x}^{-n} v\right\| \leq C \lambda^{n}\|v\|$ for every $v \in E^{u}(x), n \geq 0$;
(3) $D f_{x}\left(E^{s}(x)\right)=E^{s}(f(x))$ and $D f_{x}\left(E^{u}(x)\right)=E^{u}(f(x))$.

Adapted Metrics

Theorem

If Λ is a hyperbolic set of $f: M \rightarrow M$ with constants C and λ, then for every $\varepsilon>0$ there is a C^{1} Riemannian metric $\langle\cdot, \cdot\rangle^{\prime}$ in a neighborhood of Λ, called the adapted metric or Lyapunov metric, with respect to which f is hyperbolic and satisfies the conditions of hyperbolicity with $C^{\prime}=1, \lambda^{\prime}=\lambda+\varepsilon$, and the subspaces $E^{s}(x)$ and $E^{u}(x)$ are ε-orthogonal. That is, $\left\langle v^{s}, v^{u}\right\rangle^{\prime}<\varepsilon$ for all unit vectors $v^{s} \in E^{s}(x), v^{u} \in E^{u}(x)$, and all $x \in \Lambda$.

Invariant cones and neighborhoods of \wedge

Given $\varepsilon>0$, define the sets

$$
\begin{aligned}
& \Lambda_{\varepsilon}^{s}=\left\{x \in U: \operatorname{dist}\left(f^{n}(x), \Lambda\right)<\varepsilon \forall n \in \mathbb{N}_{0}\right\}, \\
& \Lambda_{\varepsilon}^{u}=\left\{x \in U: \operatorname{dist}\left(f^{-n}(x), \Lambda\right)<\varepsilon \forall n \in \mathbb{N}_{0}\right\}
\end{aligned}
$$

Note $E^{s}(x)$ and $E^{u}(x)$ vary continuously, so can be extended to a neighborhood $U \supset \Lambda$, so $T_{x} U=\widetilde{E}^{s}(x) \oplus \widetilde{E}^{u}(x)$ for every $x \in U$.

Given $x \in U, v \in T_{x} M$, suppose $v=v^{s}+v^{u}, v^{s} \in \widetilde{E}^{s}(x)$, $v^{u} \in \widetilde{E}^{u}(x)$. Define the invariant stable and unstable cones of size $\alpha>0$:

$$
\begin{aligned}
& K_{\alpha}^{s}(x)=\left\{v \in T_{x} M:\left\|v^{u}\right\| \leq \alpha\left\|v^{s}\right\|\right\} \\
& K_{\alpha}^{u}(x)=\left\{v \in T_{x} M:\left\|v^{s}\right\| \leq \alpha\left\|v^{u}\right\|\right\} .
\end{aligned}
$$

Local Stable and Unstable Submanifolds

Theorem (Stable/Unstable Manifolds)

Let $f: M \rightarrow M$ be a C^{1} diffeomorphism of a differentiable manifold and let $\Lambda \subset M$ be a hyperbolic set of f with constant f. Assume M has a Lyapunov metric for f. Then there are $\varepsilon>0$, $\delta>0$ such that for every $x^{s} \in \Lambda_{\delta}^{s}$ and every $x^{u} \in \Lambda_{\delta}^{u}$,

- the sets (known as lccal unstable and local stable manifolds)

$$
\begin{aligned}
& W_{\varepsilon}^{u}\left(x^{u}\right)=\left\{y \in M: \operatorname{dist}\left(f^{-n}\left(x^{s}\right), f^{-n}(y)\right)<\varepsilon \forall n \in \mathbb{N}_{0}\right\}, \\
& W_{\varepsilon}^{s}\left(x^{s}\right)=\left\{y \in M: \operatorname{dist}\left(f^{n}\left(x^{s}\right), f^{n}(y)\right)<\varepsilon \forall n \in \mathbb{N}_{0}\right\}
\end{aligned}
$$

are C^{1} embedded discs;

- $T_{y^{u / s}} W_{\varepsilon}^{u / s}\left(x^{u / s}\right)=E^{u / s}\left(x^{u / s}\right)$ for every $y^{u / s} \in W_{\varepsilon}^{u / s}\left(x^{u / s}\right)$;

Local Stable and Unstable Submanifolds

Theorem (Stable/Unstable Manifolds) (continued)

- $f\left(W_{\varepsilon}^{s}\left(x^{s}\right)\right) \subset W_{\varepsilon}^{s}\left(f\left(x^{s}\right)\right)$ and $f^{-1}\left(W_{\varepsilon}^{u}\left(f\left(x^{u}\right)\right)\right) \subset W_{\varepsilon}^{u}\left(x^{u}\right)$;
- if $y^{s}, z^{s} \in W_{\varepsilon}^{s}\left(x^{s}\right)$, then $d^{s}\left(f\left(y^{s}\right), f\left(z^{s}\right)\right)<\lambda d^{s}\left(y^{s}, z^{s}\right)$, where d^{s} is the distance along $W_{\varepsilon}^{s}\left(x^{s}\right)$;
- if $y^{u}, z^{u} \in W_{\varepsilon}^{u}\left(x^{u}\right)$, then $d^{u}\left(f^{-1}\left(y^{u}\right), f^{-1}\left(z^{u}\right)\right)<\lambda d^{u}\left(y^{u}, z^{u}\right)$, where d^{u} is the distance along $W_{\varepsilon}^{u}\left(x^{u}\right)$;
- if $0<\operatorname{dist}\left(x^{s}, y\right)<\varepsilon$ and $\exp _{x^{s}}^{-1}(y) \in K_{\delta}^{u}\left(x^{s}\right)$, then $\operatorname{dist}\left(f\left(x^{s}\right), f(y)\right)>\lambda^{-1} \operatorname{dist}\left(x^{5}, y\right)$;
- if $0<\operatorname{dist}\left(x^{u}, y\right)<\varepsilon$ and $\exp _{x^{u}}^{-1}(y) \in K_{\delta}^{s}\left(x^{u}\right)$, then $\operatorname{dist}\left(f\left(x^{u}\right), f(y)\right)<\lambda \operatorname{dist}\left(x^{s}, y\right)$;
- if $y^{s} \in W_{\varepsilon}^{s}\left(x^{s}\right)$, then $W_{\alpha}^{s}\left(y^{s}\right) \subset W_{\varepsilon}^{s}\left(x^{s}\right)$ for some $\alpha>0$, and if $y^{u} \in W_{\varepsilon}^{u}\left(x^{u}\right)$, then $W_{\beta}^{u}\left(y^{u}\right) \subset W_{\varepsilon}^{u}\left(x^{u}\right)$ for some $\beta>0$.

Local Maximality and Local Product Structure

Definition

- A hyperbolic set $\Lambda \subset M$ of $f: U \rightarrow M$ is locally maximal if there is an open set V such that $\Lambda \subset V \subset U$ and

$$
\Lambda=\bigcap_{n \in \mathbb{Z}} f^{n}(V)
$$

- Λ has local product structure if there are sufficiently small $\varepsilon>0$ and $\delta>0$ such that:
(1) for all $x, y \in \Lambda, W_{\varepsilon}^{s}(x) \cap W_{\varepsilon}^{u}(y)$ consists of at most one point, which belongs to Λ; and,
(2) for $x, y \in \Lambda$ with $d(x, y)<\delta$, the intersection consists of exactly one point $[x, y]=W_{\varepsilon}^{s}(x) \cap W_{\varepsilon}^{u}(y)$, and the intersection is transverse.

Local Maximality and Local Product Structure

If Λ has local product structure, then there is a neighborhood $U(x)$ of every $x \in \Lambda$ so that

$$
U(x) \cap \Lambda=\left\{[y, z]: y \in U(x) \cap W_{\varepsilon}^{s}(x), z \in U(x) \cap W_{\varepsilon}^{u}(x)\right\}
$$

Theorem

A hyperbolic set Λ is locally maximal if and only if it has a local product structure.

Global Stable and Unstable Submanifolds

Global analogue of stable/unstable submanifolds for points $x \in \Lambda$:

$$
\begin{aligned}
& W^{s}(x):=\left\{y \in M: d\left(f^{n}(x), f^{n}(y)\right) \rightarrow 0 \text { as } n \rightarrow \infty\right\} \\
& W^{u}(x):=\left\{y \in M: d\left(f^{-n}(x), f^{-n}(y)\right) \rightarrow 0 \text { as } n \rightarrow \infty\right\} .
\end{aligned}
$$

Theorem

There is an $\varepsilon_{0}>0$ such that for every $\varepsilon \in\left(0, \varepsilon_{0}\right)$, for every $x \in \Lambda$,

$$
\begin{aligned}
& W^{s}(x)=\bigcup_{n=0}^{\infty} f^{-n}\left(W_{\varepsilon}^{s}\left(f^{n}(x)\right)\right), \quad \text { and } \\
& W^{u}(x)=\bigcup_{n=0}^{\infty} f^{n}\left(W_{\varepsilon}^{u}\left(f^{-n}(x)\right)\right)
\end{aligned}
$$

Anosov Diffeomorphisms

An Anosov diffeomorphism is a diffeomorphism $f: M \rightarrow M$ of a connected differentiable manifold for which M is a hyperbolic set.

Suppose N is a simply-connected nilpotent Lie group, Г a uniform discrete subgroup of N. Then $M:=N / \Gamma$ is a nilmanifold.

If $\bar{f}: N \rightarrow N$ is an automorphism of N that preserves Γ and whose derivative at the identity is hyperbolic, then the induced map $f: M \rightarrow M$ is Anosov.

Conjecture: Up to finite coverings, all Anosov diffeomorphisms are topologically conjugate to automorphisms of nilmanifolds.

Anosov Diffeomorphisms

The global stable and unstable manifolds $W^{s}(x)$ and $W^{u}(x)$ of an Anosov diffeomorphisms form stable and unstable foliations of the manifold M.

For $M=\mathbb{T}^{2}, f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ generated by linear hyperbolic map $A=\left(\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right)$, the unstable leaves of the foliation (i.e. the global stable submanifolds) are curves parallel to the eigendirections of $\lambda=(3+\sqrt{5}) / 2$. Stable leaves are curves parallel to the eigendirections of $1 / \lambda$.

Anosov Diffeomorphisms

A point $x \in M$ is nonwandering if for every neighborhood $U \ni x$ there is an $n \geq 1$ so that $f^{n}(U) \cap U \neq \varnothing$. The set of all nonwandering points is denoted $N W(f)$.

A diffeomorphism $f \in \operatorname{Diff}^{1}(M)$ is structurally stable if for every $\varepsilon>0$, there is a neighborhood $\mathcal{U} \subset \operatorname{Diff}^{1}(M)$ of f such that for every $g \in \mathcal{U}$ there is a homeomorphism $h: M \rightarrow M$ with $h \circ f=g \circ h$ and $d_{0}(h, I d)<\varepsilon$.

Properties of Anosov diffeomorphisms:

- Anosov diffeomorphisms form an open (possibly empty) subset of $\operatorname{Diff}^{1}(M)$.
- Anosov diffeomorphisms are structurally stable.
- The set of periodic points is dense in $N W(f)$.

Anosov Diffeomorphisms

Theorem

Let $f: M \rightarrow M$ be an Anosov diffeomorphism. The following are equivalent:

- $N W(f)=M$;
- every unstable manifold is dense in M;
- every stable manifold is dense in M;
- f is topologically transitive (i.e. there exists a dense orbit);
- f is topologically mixing (i.e. for every $U, V \subset M$, there is $N \in \mathbb{N}$ such that $f^{n}(U) \cap V \neq \varnothing$ for $\left.n \geq N\right)$.

Conjecture: These statements hold for every Anosov diffeomorphism.

Markov Partitions

Anosov diffeomorphisms are often encoded into a symbolic system via a Markov partition.

Definition

A Markov partition \mathcal{P} of a manifold M for an invariant subset Λ of a diffeomorphism $f: M \rightarrow M$ is a (typically finite) collection of subsets $R_{i} \subset M$, called rectangles, such that for all i, j, k :

- $R_{i}=\overline{\operatorname{int} R_{i}}$;
- $\operatorname{int} R_{i} \cap \operatorname{int} R_{j}=\varnothing$ if $i \neq j$;
- if $f^{m}\left(\operatorname{int} R_{i}\right) \cap \operatorname{int} R_{j} \cap \Lambda=\varnothing$ for some $m \in \mathbb{Z}$, and $f^{n}\left(\operatorname{int} R_{j}\right) \cap \operatorname{int} R_{k} \cap \Lambda \neq \varnothing$ for some $n \in \mathbb{Z}$, then $f^{m+n}\left(\operatorname{int} R_{i}\right) \cap \operatorname{int} R_{k} \cap \Lambda \neq \varnothing$.

Markov Partitions

The set of two-sided sequences of the alphabet $\left\{R_{i}\right\}$ gives a symbolic dynamical system, whose orbits correspond to the orbits of $f: M \rightarrow M$

For $M=\mathbb{S}^{1}, f=E_{2}$, even though f is not hyperbolic, the partition $R_{0}=[0,1 / 2], R_{1}=[1 / 2,1]$ is a Markov partition: the binary-expanded point $0.0001110000101 \ldots 2 \in \mathbb{S}^{1}$ gets sent first to R_{0} in the first 3 iterations of E_{2}, then R_{1} for the next three iterations, then R_{0} for the next four, etc.

Theorem

Every Anosov diffeomorphism admits a Markov partition.

Markov Partitions

Thank You!

References:

- Katok, A. \& Hasselblatt, B. (1995) Introduction to the Modern Theory of Dynamical Systems. Cambridge: Cambridge University Press.
- Brin, M. \& Stuck, G. (2015) Introduction to Dynamical Systems. Cambridge: Cambridge University Press.

