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Introduction

Introduction

o A (discrete) dynamical system is a pair (X, f), with X a set
of points (almost always either a topological space or a
measure space), and f : X — X a map (almost always either
continuous or measurable, depending on the structure of X).

@ Given x € X, the forward orbit of x is the set
Ot (x) = {f"(x) : n € No}. If f is invertible, the full orbit (or
just the orbit) is the set O(x) = {f"(x) : n € Z}.

e A point x € X is periodic if f"(x) = x for some n > 1 (in
which case we say x has period n, or x is n-periodic). A point
x € X is fixed if f(x) = x.
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Example: Angle Doubling

Let X =S! =R/Z, and let f = E : x = 2x (mod 1).

Properties:

@ “Chaotic": Points that are arbitrarily close together become
far apart after sufficiently many iterations

@ Periodic points of E, are dense in St

o Topologically transitive: there is a point x € S! with a dense
forward orbit.

@ Measure-preserving with respect to Lebesgue measure:
AA) = A (E51(A)).
Two orbits:
e O7(0.11) = {0.11,0.22,0.44,0.88,0.76,0.52,0.04, . ..}
e O1(0.12) = {0.12,0.24,0.48,0.96,0.92,0.84,0.68, . ..}
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Example: 2-Shift

Let X = QF = {0,1}"°, and let f = 0 : QJ — QF be defined by
o(w); = wjt1 (ie. the sequence w gets shifted to the left by 1, and
the O'! letter gets deleted).

Metric on Q;r:
d(w, w/) — o min{i : w,-;éw,{}

Open balls in Q;’ are cylinders: for ayg,...,a, € {0,1}:
Cao...an = {w S Q;_ wi=o; Vo< i < n}

General cylinders: for ayp,...,a, € {0,1} and nonnegative integers
Jo<j<-<Jn

Clo-dn  — {we:wj; =a;, VO < k<n}

g...Qlp
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Example: 2-shift

Orbit example:

w = 00011100001010001111 ...,
o(w) = 0011100001010001111 ... .,
0?(w) = 011100001010001111 .. .,
o3(w) = 11100001010001111 . . .,
o*(w) = 1100001010001111.. .,

Easy to show ¢ is continuous.
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Factors, conjugacies, and isomorphisms

@ Suppose (X, f) and (Y, g) are topological dynamical systems,
and h: X — Y is a surjective continuous map so that
hof =goh. Then (Y,g) is a topological factor of (X, f).
If his a homeomorphism, then (X, f) and (Y, g) are
topologically conjugate.

@ Suppose (X, f) and (Y, g) are measurable dynamical systems,
with X and Y finite-measure, and h: X — Y is a measurable
and measure-preserving map that restricts to a bijection
X' = Y' with X’ C X and Y’ C Y full-measure, so that
hof =goh. Then (X,f)and (Y,g) are
measure-theoretically isomorphic (or just isomorphic if the
context is clear).
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Angle doubling and 2-shift

Suppose we express the angle doubling map as doubling numbers
expressed in binary:
0.11 =0.00011100001010001111.. .5
E>(0.11) = 0.22 = 0.0011100001010001111.. .,
E2(0.11) = 0.44 = 0.011100001010001111 .. .,
E3(0.11) = 0.88 = 0.11100001010001111 .. .
E>(0.11) = 0.76 = 0.1100001010001111. . .

Comparing this to the example orbit from 2 slides ago, the formal
string of Os and 1s are the same!
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Angle doubling and 2-shift

Define h : Q;r — St sending w = wowiws . .. — 0.wowiws . . .2.
With the topology on Q;, h is surjective and continuous, and as
we saw, ho E; = oo h. So (Sl, E2) is a factor of (Q;,a).

Let 1 : B(Q3) — [0,1] be determined by

L (CJ'on-jn ) —9n

QqQ...Qp
Then  is an example of a Bernoulli probability measure on Q;

Let X' C QF be the set of strings in QJ that do not end in a tail
of all Os or all 1s. Since u is non-atomic and X’ is countable,

1(X') = 0. Note A(h(X")) = 0.

Can show h is measurable and measure-preserving, so (S, £>) and
(4, o) are measure-theoretically isomorphic.
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Setting of Hyperbolic Dynamics

Suppose M is an n-dimensional (n > 2) C! Riemannian manifold
(ie. the tangent vector space at each point x € M has an inner
product, and this inner product varies smoothly over M).

Now suppose f : M — M is a C" local diffeomorphism for some
r > 1 (meaning for every x € M, there is an open neighborhood
U C M so that f|y : U — f(U) is a diffeomorphism).
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Hyperbolic Sets

Definition
Let U C M be open so that f : U — f(U) is a diffeomorphism. A
compact f-invariant set A C U is a hyperbolic set if there is a
A€ (0,1), C >0, and a splitting T,M = E*(x) & E"(x) at each
tangent plane for x € A so that:

Q@ ||Dflv| < CA"|v|| for every v € E*(x), n > 0;

Q@ ||Df7"v|| < CA"||v|| for every v € E¥(x), n > 0;

@ Df (E*(x)) = E*(f(x)) and Df, (E*(x)) = E“(f(x)).

NOTE: A may not be a submanifold of M (often not locally
homeomorphic to R"” at any point x € A).
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Smale Horseshoe

Let S C R? be a square with two sides capped by half discs, and
f:S — S adiffeomorphism onto its image, stretching S vertically,
contracting horizontally, and folding in half, like so:

Notice only B and D have images intersecting the central square.
So if a point is to remain in the square, it has to always stay inside
of sets B and D.
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Smale Horseshoe

Iterating the horseshoe map f : S — S forward twice more,we get
a progressively more “coiled” horseshoe.

Taking preimage f~1(B), we get two thin horizontal rectangles:
one inside B, and one inside D. Ditto f~1(D).

;IH.-.
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Smale Horseshoe

The intersection of all forward images of B and D form a Cantor
set, as does the intersection of all preimages.

[e.9]
The resulting set A = ﬂ f"(B) U f"(D) is a product of Cantor
n=-—o0

sets, and a hyperbolic set in S. Note f : A — A is a bijection.
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Smale Horseshoe

In the case of the horseshoe, the contracting directions E*(x) are
horizontal lines at each point (notice if two points in A share a
horizontal coordinate, they grow closer together), and the
expanding directions EY(x) are vertical lines (if two points share a
vertical coordinate, they grow closer together in backwards time).
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Smale Horseshoe

Much like the expanding map E; : St — S, the horseshoe
f : A = A can be encoded into a symbolic system: the full shift
Q, :={0,1}%, with map o : Q — Q0 given by o(w); = wit1.

In this example, p has symbolic representation ---000-- -, s has
symbolic representation ---111---, and r has symbolic
representation ---00100---. (p stays in B and s stays in D, but r
is in D once and otherwise stays in B.)
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Smale Solenoid

Let M = S! x D?: the solid torus. Define the map f : M — M by

1 1
flo,x,y) = <2g0, ax + 5 cos 2mp, ay + 5 sin 27rcp>

for some fixed a € (0,1/2). Then f is a diffeomorphism onto its
image, a solid torus stretched by a factor of 2, contracted by a
factor of a, and twisted inside the original solid torus:
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Smale Solenoid

The closed invariant set A = (15 f"(M) is known as the
Smale-Williams solenoid. Note f|p : A — A is bijective.

The solenoid is a hyperbolic set, in fact a hyperbolic attractor
(meaning the orbit of every point p € M approaches a sequence of
points in A, i.e. d(f"(p),\) — 0).

Locally, the solenoid is a product of a Cantor set with an open
interval.

The stable subspaces E*(p) are parallel to the 2-dimensional
cross-sectional discs of M.

The unstable subspaces EY(p) are along the “open intervals” in
the local product structure of A.
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Analyzing the solenoid

Define ¢ = {(g@n)iio € (Sl)NO 2 i =2pi4+1 (mod 1)} Then & is

a closed subgroup of the additive topological group (Sl)NO.

The map a : & — & given by a(go, ¥1,-..) = (290, ¥o, 1, - ..) is
a group automorphism and a homeomorphism.

Given p € A, the first (angular) coordinates of the preimages
f="(p) = (¢n, Xn, yn) form a sequence h(p) = (pn)peqy € ®.

One can show h: A — ® is a homeomorphism, and hof = a o h.
Thus (¥, ) and (A, f) are topologically conjugate.
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Hyperbolic Toral Automorphisms

Let M =T? =S! x St =R?2/72. Let A= (i i),and let

F : R?2 — R? be the action of A on R2.

Since det(A) =1, F (Z2) = 72, so F descends to a well-defined
map f : T? — T2, known as a hyperbolic toral automorphism.

Generally, if A € SL(n,Z) has no eigenvalues on the unit circle,
then f4 : T" — T" is a hyperbolic toral automorphism.
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Hyperbolic Toral Automorphisms

: 2 1\
Eigenvalues of A = < 11 >

o \= (37L \/5) /2 > 1, in direction of vy := ((1 + \/5) /2,1)
e 1/X, in direction of vy /) := ((1— V5) /2,1)
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Hyperbolic Toral Automorphisms

Note df, : Tp’HQ — T,c(p)’I[‘2 has matrix expression A = ( i 1 )

Identify T,T? with R? at every p € T?; then ES(p) and EY(p) are
the eigenspaces spanned by vy, and vy respectively.
Thus all of T2 is a hyperbolic set.

If f: M — M is a diffeomorphism of a Riemannian manifold for
which all of M is hyperbolic, then f is known as an Anosov
diffeomorphism. Hyperbolic toral automorphisms are examples of
Anosov diffeomorphisms.
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Adapted Metrics

Recall definition of a hyperbolic set A C M:

Definition
Let U C M be open so that f : U — f(U) is a diffeomorphism. A
compact f-invariant set A C U is a hyperbolic set if there is a
A€ (0,1), C >0, and a splitting T,yM = E*(x) & E“(x) at each
tangent plane for x € A so that:

Q@ ||Dflv| < CA"|v|| for every v € E*(x), n > 0;

Q@ ||Df7"v|| < CA"||v|| for every v € E¥(x), n > 0;

@ Df. (E°(x)) = E5(f(x)) and Df, (E¥(x)) = E“(f(x)).
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Adapted Metrics

Theorem

If \ is a hyperbolic set of f : M — M with constants C and ),
then for every e > 0 there is a C* Riemannian metric (-,-)’ in a
neighborhood of N, called the adapted metric or Lyapunov metric,
with respect to which f is hyperbolic and satisfies the conditions of
hyperbolicity with C' =1, N = X + ¢, and the subspaces E*(x)
and EY(x) are e-orthogonal. That is, (v°,v")" < e for all unit
vectors v° € E*(x), v¥ € EY(x), and all x € \.
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Invariant cones and neighborhoods of A

Given € > 0, define the sets
N, ={x e U:dist(f"(x),\) <eVneNg},

N ={x € U:dist (f"(x),A) <eVneNg}

Note E°(x) and E“(x) vary continuously, so can be extended to a
neighborhood U D A, so T, U = E*(x) & EY(x) for every x € U.

Given~x e U, ve T,M, suppose v = v* + v, v° € Es(x),
vY € EY(x). Define the invariant stable and unstable cones of size
a>0:

Ka(x) ={v e TM:|vi] < allv?[},

KU(x) = {v € TeM < |V¥)] < o v}
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Local Stable and Unstable Submanifolds

Theorem (Stable/Unstable Manifolds)

Let f : M — M be a C! diffeomorphism of a differentiable
manifold and let N C M be a hyperbolic set of f with constant f.
Assume M has a Lyapunov metric for f. Then there are € > 0,

0 > 0 such that for every x° € \§ and every x" € A§,

o the sets (known as lccal unstable and local stable manifolds)

WA (x")={y e M :dist (f~"(x*),f "(y)) <eVneNo},

(5}

W2(x°) ={y € M :dist (f"(x°),f"(y)) <eVneNg}

&l

are C' embedded discs;
° Tyu/s Wau/s(xu/S) = EU/S(Xu/s) for every yu/s c WEU/S(X“/S);
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Local Stable and Unstable Submanifolds

Theorem (Stable/Unstable Manifolds) (continued)

o f(W2(x%)) C W2 (f(x%)) and 1 (WX(F(x"))) € W (x");
o ify® z° € W2(x®), then d° (f(y®), f(z°)) < Ad* (y*, z°),
where d* is the distance along W2(x®);
o ify!Y, z" € WY(x"), then
d (F1(y"), f1(z")) < Ad“(y“, z"), where d" is the
distance along W*(x");
o if0 < dist(x%,y) < ¢ and expys (y) € K¥(x®), then
dist (F(x*), f(y)) > A~Ldist (x®, y);
o if0 < dist(x¥,y) < € and exp,u (v) € K§(xY), then
dist (f(xY), ( )) < Adist (x°,y);

o ifys € W2 (x®), then W5 (y*) C W2 (x®) for some a > 0, and
if y" € W (x"), then Wy (y") C Wt (x") for some 3 > 0.
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Local Maximality and Local Product Structure

@ A hyperbolic set A C M of f : U — M is locally maximal if
there is an open set V such that A C V C U and
A=) (V).
neZ
@ A has local product structure if there are sufficiently small
€ >0 and 6 > 0 such that:
@ for all x,y € A, W2(x) N WX(y) consists of at most one point,
which belongs to A; and,
@ for x,y € A with d(x,y) < 4, the intersection consists of
exactly one point [x,y] = W2(x) N WX(y), and the
intersection is transverse.
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Local Maximality and Local Product Structure

If A\ has local product structure, then there is a neighborhood U(x)
of every x € A so that

Ux)NAN=A{[y,z] 1y € U(x) N WZ(x), z € U(x) N WH(x)}.

A hyperbolic set N\ is locally maximal if and only if it has a local
product structure.
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Global Stable and Unstable Submanifolds

Global analogue of stable/unstable submanifolds for points x € A:

Wo(x) :={y e M:d(f"(x),f"(y)) = 0as n — oo},
WY(x):={yeM:d(f"(x),f "(y)) = 0asn—oo}.

There is an €9 > 0 such that for every € € (0, &), for every x € A,

= we(f(x), and
n=0

= U (we (F700)
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Anosov Diffeomorphisms

An Anosov diffeomorphism is a diffeomorphism f : M — M of a
connected differentiable manifold for which M is a hyperbolic set.

Suppose N is a simply-connected nilpotent Lie group, I a uniform
discrete subgroup of N. Then M := N/T is a nilmanifold.

If f: N — N is an automorphism of N that preserves [ and whose
derivative at the identity is hyperbolic, then the induced map
f: M — M is Anosov.

Conjecture: Up to finite coverings, all Anosov diffeomorphisms
are topologically conjugate to automorphisms of nilmanifolds.
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Anosov Diffeomorphisms

The global stable and unstable manifolds W*(x) and W"(x) of an
Anosov diffeomorphisms form stable and unstable foliations of the

manifold M.
For M = T?, f : T2 — T? generated by linear hyperbolic map
A= i 1 ) the unstable leaves of the foliation (i.e. the global

stable submanifolds) are curves parallel to the eigendirections of
A= (3 + \/3) /2. Stable leaves are curves parallel to the
eigendirections of 1/\.
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Anosov Diffeomorphisms

A point x € M is nonwandering if for every neighborhood U > x
there is an n > 1 so that f"(U) N U # &. The set of all
nonwandering points is denoted NW/(f).

A diffeomorphism f € Diff}(M) is structurally stable if for every
€ > 0, there is a neighborhood U C Diff'(M) of f such that for
every g € U there is a homeomorphism h: M — M with

hof =gohand dy(h,1d) <e.

Properties of Anosov diffeomorphisms:

@ Anosov diffeomorphisms form an open (possibly empty)
subset of Diff}(M).

@ Anosov diffeomorphisms are structurally stable.
@ The set of periodic points is dense in NW(f).
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Anosov Diffeomorphisms

Let f : M — M be an Anosov diffeomorphism. The following are
equivalent:

o NW(f)= M;

@ every unstable manifold is dense in M;

@ every stable manifold is dense in M;

e f is topologically transitive (i.e. there exists a dense orbit);

e f is topologically mixing (i.e. for every U,V C M, there is
N € N such that f"(U)NV # & forn > N).

Conjecture: These statements hold for every Anosov
diffeomorphism.
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Markov Partitions

Anosov diffeomorphisms are often encoded into a symbolic system
via a Markov partition.

Definition

A Markov partition P of a manifold M for an invariant subset A
of a diffeomorphism f : M — M is a (typically finite) collection of
subsets R; C M, called rectangles, such that for all i, j, k:
e R; = intR;;
o intR; NintR; = & if i # j;
o if ™ (intR;) NintR; N A = & for some m € Z, and
f" (intR;) NintRx N A # & for some n € Z, then
Fn (intR;) NintRx N A # .
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Markov Partitions

The set of two-sided sequences of the alphabet {R;} gives a
symbolic dynamical system, whose orbits correspond to the orbits
of f:M—M

For M =S, f = E5, even though f is not hyperbolic, the partition
Ro =1[0,1/2], R1 = [1/2,1] is a Markov partition: the
binary-expanded point 0.0001110000101..., € S? gets sent first to
Ro in the first 3 iterations of E;, then R; for the next three
iterations, then Ry for the next four, etc.

Every Anosov diffeomorphism admits a Markov partition.
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Markov Partitions
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Thank Youl
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