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Introduction

Definition

A (discrete) dynamical system is a pair (X , f ), with X a set
of points (almost always either a topological space or a
measure space), and f : X → X a map (almost always either
continuous or measurable, depending on the structure of X ).

Given x ∈ X , the forward orbit of x is the set
O+(x) = {f n(x) : n ∈ N0}. If f is invertible, the full orbit (or
just the orbit) is the set O(x) = {f n(x) : n ∈ Z}.
A point x ∈ X is periodic if f n(x) = x for some n ≥ 1 (in
which case we say x has period n, or x is n-periodic). A point
x ∈ X is fixed if f (x) = x .
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Example: Angle Doubling

Let X = S1 = R/Z, and let f = E2 : x 7→= 2x (mod 1).

Properties:

“Chaotic”: Points that are arbitrarily close together become
far apart after sufficiently many iterations

Periodic points of E2 are dense in S1

Topologically transitive: there is a point x ∈ S1 with a dense
forward orbit.

Measure-preserving with respect to Lebesgue measure:
λ(A) = λ

(
E−1

2 (A)
)
.

Two orbits:

O+(0.11) = {0.11, 0.22, 0.44, 0.88, 0.76, 0.52, 0.04, . . .}
O+(0.12) = {0.12, 0.24, 0.48, 0.96, 0.92, 0.84, 0.68, . . .}
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Example: 2-Shift

Let X = Ω+
2 = {0, 1}N0 , and let f = σ : Ω+

2 → Ω+
2 be defined by

σ(ω)i = ωi+1 (ie. the sequence ω gets shifted to the left by 1, and
the 0th letter gets deleted).

Metric on Ω+
2 :

d(ω, ω′) = 2−min{i :ωi 6=ω′
i}

Open balls in Ω+
2 are cylinders: for α0, . . . , αn ∈ {0, 1}:

Cα0...αn =
{
ω ∈ Ω+

2 : ωi = αi ∀ 0 ≤ i ≤ n
}

General cylinders: for α0, . . . , αn ∈ {0, 1} and nonnegative integers
j0 < j1 < · · · < jn:

C j0...jn
α0...αn

= {ω ∈ Ω : ωjk = αjk ∀ 0 ≤ k ≤ n}
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Example: 2-shift

Orbit example:

ω = 00011100001010001111 . . . ,

σ(ω) = 0011100001010001111 . . . ,

σ2(ω) = 011100001010001111 . . . ,

σ3(ω) = 11100001010001111 . . . ,

σ4(ω) = 1100001010001111 . . . ,

Easy to show σ is continuous.
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Factors, conjugacies, and isomorphisms

Definition

Suppose (X , f ) and (Y , g) are topological dynamical systems,
and h : X → Y is a surjective continuous map so that
h ◦ f = g ◦ h. Then (Y , g) is a topological factor of (X , f ).
If h is a homeomorphism, then (X , f ) and (Y , g) are
topologically conjugate.

Suppose (X , f ) and (Y , g) are measurable dynamical systems,
with X and Y finite-measure, and h : X → Y is a measurable
and measure-preserving map that restricts to a bijection
X ′ → Y ′, with X ′ ⊆ X and Y ′ ⊆ Y full-measure, so that
h ◦ f = g ◦ h. Then (X , f ) and (Y , g) are
measure-theoretically isomorphic (or just isomorphic if the
context is clear).
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Angle doubling and 2-shift

Suppose we express the angle doubling map as doubling numbers
expressed in binary:

0.11 = 0.00011100001010001111 . . .2

E2(0.11) = 0.22 = 0.0011100001010001111 . . .2

E 2
2 (0.11) = 0.44 = 0.011100001010001111 . . .2

E 3
2 (0.11) = 0.88 = 0.11100001010001111 . . .2

E 4
2 (0.11) = 0.76 = 0.1100001010001111 . . .2

Comparing this to the example orbit from 2 slides ago, the formal
string of 0s and 1s are the same!
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Angle doubling and 2-shift

Define h : Ω+
2 → S1 sending ω = ω0ω1ω2 . . . 7→ 0.ω0ω1ω2 . . .2.

With the topology on Ω+
2 , h is surjective and continuous, and as

we saw, h ◦ E2 = σ ◦ h. So
(
S1,E2

)
is a factor of

(
Ω+

2 , σ
)
.

Let µ : B
(
Ω+

2

)
→ [0, 1] be determined by

µ
(
C j0...jn
α0...αn

)
= 2−n

Then µ is an example of a Bernoulli probability measure on Ω+
2 .

Let X ′ ⊆ Ω+
2 be the set of strings in Ω+

2 that do not end in a tail
of all 0s or all 1s. Since µ is non-atomic and X ′ is countable,
µ(X ′) = 0. Note λ(h(X ′)) = 0.

Can show h is measurable and measure-preserving, so (S1,E2) and
(Ω+

2 , σ) are measure-theoretically isomorphic.
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Setting of Hyperbolic Dynamics

Suppose M is an n-dimensional (n ≥ 2) C 1 Riemannian manifold
(ie. the tangent vector space at each point x ∈ M has an inner
product, and this inner product varies smoothly over M).

Now suppose f : M → M is a C r local diffeomorphism for some
r ≥ 1 (meaning for every x ∈ M, there is an open neighborhood
U ⊂ M so that f |U : U → f (U) is a diffeomorphism).
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Hyperbolic Sets

Definition

Let U ⊂ M be open so that f : U → f (U) is a diffeomorphism. A
compact f -invariant set Λ ⊂ U is a hyperbolic set if there is a
λ ∈ (0, 1), C > 0, and a splitting TxM = E s(x)⊕ Eu(x) at each
tangent plane for x ∈ Λ so that:

1 ‖Df nx v‖ ≤ Cλn ‖v‖ for every v ∈ E s(x), n ≥ 0;

2 ‖Df −nx v‖ ≤ Cλn ‖v‖ for every v ∈ Eu(x), n ≥ 0;

3 Dfx (E s(x)) = E s(f (x)) and Dfx (Eu(x)) = Eu(f (x)).

NOTE: Λ may not be a submanifold of M (often not locally
homeomorphic to Rn at any point x ∈ Λ).
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Smale Horseshoe

Let S ⊂ R2 be a square with two sides capped by half discs, and
f : S → S a diffeomorphism onto its image, stretching S vertically,
contracting horizontally, and folding in half, like so:

Notice only B and D have images intersecting the central square.
So if a point is to remain in the square, it has to always stay inside
of sets B and D.
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Smale Horseshoe

Iterating the horseshoe map f : S → S forward twice more,we get
a progressively more “coiled” horseshoe.

Taking preimage f −1(B), we get two thin horizontal rectangles:
one inside B, and one inside D. Ditto f −1(D).
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Smale Horseshoe

The intersection of all forward images of B and D form a Cantor
set, as does the intersection of all preimages.

The resulting set Λ =
∞⋂

n=−∞
f n(B) ∪ f n(D) is a product of Cantor

sets, and a hyperbolic set in S . Note f : Λ→ Λ is a bijection.
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Smale Horseshoe

In the case of the horseshoe, the contracting directions E s(x) are
horizontal lines at each point (notice if two points in Λ share a
horizontal coordinate, they grow closer together), and the
expanding directions Eu(x) are vertical lines (if two points share a
vertical coordinate, they grow closer together in backwards time).
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Smale Horseshoe

Much like the expanding map E2 : S1 → S1, the horseshoe
f : Λ→ Λ can be encoded into a symbolic system: the full shift
Ω2 := {0, 1}Z, with map σ : Ω2 → Ω2 given by σ(ω)i = ωi+1.

In this example, p has symbolic representation · · · 000 · · · , s has
symbolic representation · · · 111 · · · , and r has symbolic
representation · · · 00100 · · · . (p stays in B and s stays in D, but r
is in D once and otherwise stays in B.)
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Smale Solenoid

Let M = S1 × D2: the solid torus. Define the map f : M → M by

f (ϕ, x , y) =

(
2ϕ, αx +

1

2
cos 2πϕ, αy +

1

2
sin 2πϕ

)
for some fixed α ∈ (0, 1/2). Then f is a diffeomorphism onto its
image, a solid torus stretched by a factor of 2, contracted by a
factor of α, and twisted inside the original solid torus:
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Smale Solenoid

The closed invariant set Λ =
⋂

n≥1 f
n(M) is known as the

Smale-Williams solenoid. Note f |Λ : Λ→ Λ is bijective.

The solenoid is a hyperbolic set, in fact a hyperbolic attractor
(meaning the orbit of every point p ∈ M approaches a sequence of
points in Λ, i.e. d(f n(p),Λ)→ 0).

Locally, the solenoid is a product of a Cantor set with an open
interval.

The stable subspaces E s(p) are parallel to the 2-dimensional
cross-sectional discs of M.

The unstable subspaces Eu(p) are along the “open intervals” in
the local product structure of Λ.
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Analyzing the solenoid

Define Φ =
{

(ϕn)∞n=0 ∈
(
S1
)N0 : ϕi = 2ϕi+1 (mod 1)

}
. Then Φ is

a closed subgroup of the additive topological group
(
S1
)N0 .

The map α : Φ→ Φ given by α(ϕ0, ϕ1, . . .) = (2ϕ0, ϕ0, ϕ1, . . .) is
a group automorphism and a homeomorphism.

Given p ∈ Λ, the first (angular) coordinates of the preimages
f −n(p) = (ϕn, xn, yn) form a sequence h(p) = (ϕn)∞n=0 ∈ Φ.

One can show h : Λ→ Φ is a homeomorphism, and h ◦ f = α ◦ h.
Thus (Φ, α) and (Λ, f ) are topologically conjugate.
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Hyperbolic Toral Automorphisms

Let M = T2 = S1 × S1 = R2/Z2. Let A =

(
2 1
1 1

)
, and let

F : R2 → R2 be the action of A on R2.

Since det(A) = 1, F
(
Z2
)

= Z2, so F descends to a well-defined
map f : T2 → T2, known as a hyperbolic toral automorphism.

Generally, if A ∈ SL(n,Z) has no eigenvalues on the unit circle,
then fA : Tn → Tn is a hyperbolic toral automorphism.
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Hyperbolic Toral Automorphisms

Eigenvalues of A =

(
2 1
1 1

)
:

λ =
(
3 +
√

5
)
/2 > 1, in direction of vλ :=

((
1 +
√

5
)
/2, 1

)
1/λ, in direction of v1/λ :=

((
1−
√

5
)
/2, 1

)
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Hyperbolic Toral Automorphisms

Note dfp : TpT2 → Tf (p)T2 has matrix expression A =

(
2 1
1 1

)
.

Identify TpT2 with R2 at every p ∈ T2; then E s(p) and Eu(p) are
the eigenspaces spanned by v1/λ and vλ respectively.

Thus all of T2 is a hyperbolic set.

If f : M → M is a diffeomorphism of a Riemannian manifold for
which all of M is hyperbolic, then f is known as an Anosov
diffeomorphism. Hyperbolic toral automorphisms are examples of
Anosov diffeomorphisms.
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Adapted Metrics

Recall definition of a hyperbolic set Λ ⊂ M:

Definition

Let U ⊂ M be open so that f : U → f (U) is a diffeomorphism. A
compact f -invariant set Λ ⊂ U is a hyperbolic set if there is a
λ ∈ (0, 1), C > 0, and a splitting TxM = E s(x)⊕ Eu(x) at each
tangent plane for x ∈ Λ so that:

1 ‖Df nx v‖ ≤ Cλn ‖v‖ for every v ∈ E s(x), n ≥ 0;

2 ‖Df −nx v‖ ≤ Cλn ‖v‖ for every v ∈ Eu(x), n ≥ 0;

3 Dfx (E s(x)) = E s(f (x)) and Dfx (Eu(x)) = Eu(f (x)).
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Adapted Metrics

Theorem

If Λ is a hyperbolic set of f : M → M with constants C and λ,
then for every ε > 0 there is a C 1 Riemannian metric 〈·, ·〉′ in a
neighborhood of Λ, called the adapted metric or Lyapunov metric,
with respect to which f is hyperbolic and satisfies the conditions of
hyperbolicity with C ′ = 1, λ′ = λ+ ε, and the subspaces E s(x)
and Eu(x) are ε-orthogonal. That is, 〈v s , vu〉′ < ε for all unit
vectors v s ∈ E s(x), vu ∈ Eu(x), and all x ∈ Λ.
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Invariant cones and neighborhoods of Λ

Given ε > 0, define the sets

Λs
ε = {x ∈ U : dist (f n(x),Λ) < ε ∀ n ∈ N0} ,

Λu
ε =

{
x ∈ U : dist

(
f −n(x),Λ

)
< ε ∀ n ∈ N0

}
Note E s(x) and Eu(x) vary continuously, so can be extended to a
neighborhood U ⊃ Λ, so TxU = Ẽ s(x)⊕ Ẽu(x) for every x ∈ U.

Given x ∈ U, v ∈ TxM, suppose v = v s + vu, v s ∈ Ẽ s(x),
vu ∈ Ẽu(x). Define the invariant stable and unstable cones of size
α > 0:

K s
α(x) = {v ∈ TxM : ‖vu‖ ≤ α ‖v s‖} ,

Ku
α(x) = {v ∈ TxM : ‖v s‖ ≤ α ‖vu‖} .
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Local Stable and Unstable Submanifolds

Theorem (Stable/Unstable Manifolds)

Let f : M → M be a C 1 diffeomorphism of a differentiable
manifold and let Λ ⊂ M be a hyperbolic set of f with constant f .
Assume M has a Lyapunov metric for f . Then there are ε > 0,
δ > 0 such that for every x s ∈ Λs

δ and every xu ∈ Λu
δ ,

the sets (known as lccal unstable and local stable manifolds)

W u
ε (xu) =

{
y ∈ M : dist

(
f −n (x s) , f −n(y)

)
< ε ∀ n ∈ N0

}
,

W s
ε (x s) = {y ∈ M : dist (f n (x s) , f n(y)) < ε ∀ n ∈ N0}

are C 1 embedded discs;

Tyu/sW
u/s
ε (xu/s) = Eu/s(xu/s) for every yu/s ∈W

u/s
ε (xu/s);
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Local Stable and Unstable Submanifolds

Theorem (Stable/Unstable Manifolds) (continued)

f (W s
ε (x s)) ⊂W s

ε (f (x s)) and f −1 (W u
ε (f (xu))) ⊂W u

ε (xu);

if y s , zs ∈W s
ε (x s), then d s (f (y s), f (zs)) < λd s (y s , zs),

where d s is the distance along W s
ε (x s);

if yu, zu ∈W u
ε (xu), then

du
(
f −1(yu), f −1(zu)

)
< λdu (yu, zu), where du is the

distance along W u
ε (xu);

if 0 < dist(x s , y) < ε and exp−1
xs (y) ∈ Ku

δ (x s), then
dist (f (x s), f (y)) > λ−1dist (x s , y);

if 0 < dist(xu, y) < ε and exp−1
xu (y) ∈ K s

δ (xu), then
dist (f (xu), f (y)) < λdist (x s , y);

if y s ∈W s
ε (x s), then W s

α (y s) ⊂W s
ε (x s) for some α > 0, and

if yu ∈W u
ε (xu), then W u

β (yu) ⊂W u
ε (xu) for some β > 0.
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Local Maximality and Local Product Structure

Definition

A hyperbolic set Λ ⊂ M of f : U → M is locally maximal if
there is an open set V such that Λ ⊂ V ⊂ U and

Λ =
⋂
n∈Z

f n(V ).

Λ has local product structure if there are sufficiently small
ε > 0 and δ > 0 such that:

1 for all x , y ∈ Λ, W s
ε (x) ∩W u

ε (y) consists of at most one point,
which belongs to Λ; and,

2 for x , y ∈ Λ with d(x , y) < δ, the intersection consists of
exactly one point [x , y ] = W s

ε (x) ∩W u
ε (y), and the

intersection is transverse.
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Local Maximality and Local Product Structure

If Λ has local product structure, then there is a neighborhood U(x)
of every x ∈ Λ so that

U(x) ∩ Λ = {[y , z ] : y ∈ U(x) ∩W s
ε (x), z ∈ U(x) ∩W u

ε (x)} .

Theorem

A hyperbolic set Λ is locally maximal if and only if it has a local
product structure.
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Global Stable and Unstable Submanifolds

Global analogue of stable/unstable submanifolds for points x ∈ Λ:

W s(x) := {y ∈ M : d (f n(x), f n(y))→ 0 as n→∞} ,
W u(x) :=

{
y ∈ M : d

(
f −n(x), f −n(y)

)
→ 0 as n→∞

}
.

Theorem

There is an ε0 > 0 such that for every ε ∈ (0, ε0), for every x ∈ Λ,

W s(x) =
∞⋃
n=0

f −n (W s
ε (f n(x))) , and

W u(x) =
∞⋃
n=0

f n
(
W u
ε

(
f −n(x)

))
.
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Anosov Diffeomorphisms

An Anosov diffeomorphism is a diffeomorphism f : M → M of a
connected differentiable manifold for which M is a hyperbolic set.

Suppose N is a simply-connected nilpotent Lie group, Γ a uniform
discrete subgroup of N. Then M := N/Γ is a nilmanifold.

If f : N → N is an automorphism of N that preserves Γ and whose
derivative at the identity is hyperbolic, then the induced map
f : M → M is Anosov.

Conjecture: Up to finite coverings, all Anosov diffeomorphisms
are topologically conjugate to automorphisms of nilmanifolds.
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Anosov Diffeomorphisms

The global stable and unstable manifolds W s(x) and W u(x) of an
Anosov diffeomorphisms form stable and unstable foliations of the
manifold M.

For M = T2, f : T2 → T2 generated by linear hyperbolic map

A =

(
2 2
1 1

)
, the unstable leaves of the foliation (i.e. the global

stable submanifolds) are curves parallel to the eigendirections of
λ =

(
3 +
√

5
)
/2. Stable leaves are curves parallel to the

eigendirections of 1/λ.
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Anosov Diffeomorphisms

A point x ∈ M is nonwandering if for every neighborhood U 3 x
there is an n ≥ 1 so that f n(U) ∩ U 6= ∅. The set of all
nonwandering points is denoted NW (f ).

A diffeomorphism f ∈ Diff1(M) is structurally stable if for every
ε > 0, there is a neighborhood U ⊂ Diff1(M) of f such that for
every g ∈ U there is a homeomorphism h : M → M with
h ◦ f = g ◦ h and d0(h, Id) < ε.

Properties of Anosov diffeomorphisms:

Anosov diffeomorphisms form an open (possibly empty)
subset of Diff1(M).

Anosov diffeomorphisms are structurally stable.

The set of periodic points is dense in NW (f ).
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Anosov Diffeomorphisms

Theorem

Let f : M → M be an Anosov diffeomorphism. The following are
equivalent:

NW (f ) = M;

every unstable manifold is dense in M;

every stable manifold is dense in M;

f is topologically transitive (i.e. there exists a dense orbit);

f is topologically mixing (i.e. for every U,V ⊂ M, there is
N ∈ N such that f n(U) ∩ V 6= ∅ for n ≥ N).

Conjecture: These statements hold for every Anosov
diffeomorphism.
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Markov Partitions

Anosov diffeomorphisms are often encoded into a symbolic system
via a Markov partition.

Definition

A Markov partition P of a manifold M for an invariant subset Λ
of a diffeomorphism f : M → M is a (typically finite) collection of
subsets Ri ⊂ M, called rectangles, such that for all i , j , k :

Ri = intRi ;

intRi ∩ intRj = ∅ if i 6= j ;

if f m (intRi ) ∩ intRj ∩ Λ = ∅ for some m ∈ Z, and
f n (intRj) ∩ intRk ∩ Λ 6= ∅ for some n ∈ Z, then
f m+n (intRi ) ∩ intRk ∩ Λ 6= ∅.
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Markov Partitions

The set of two-sided sequences of the alphabet {Ri} gives a
symbolic dynamical system, whose orbits correspond to the orbits
of f : M → M

For M = S1, f = E2, even though f is not hyperbolic, the partition
R0 = [0, 1/2], R1 = [1/2, 1] is a Markov partition: the
binary-expanded point 0.0001110000101...2 ∈ S1 gets sent first to
R0 in the first 3 iterations of E2, then R1 for the next three
iterations, then R0 for the next four, etc.

Theorem

Every Anosov diffeomorphism admits a Markov partition.
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Markov Partitions
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Thank You!
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