Hyperbolic Dynamics Basic examples and current settings

Dom Veconi

Penn State University Student Dynamics Seminar

January 10 2018

Introduction

Definition

- A (discrete) dynamical system is a pair (X, f), with X a set of points (almost always either a topological space or a measure space), and f : X → X a map (almost always either continuous or measurable, depending on the structure of X).
- Given $x \in X$, the **forward orbit** of x is the set $\mathcal{O}^+(x) = \{f^n(x) : n \in \mathbb{N}_0\}$. If f is invertible, the **full orbit** (or just the orbit) is the set $\mathcal{O}(x) = \{f^n(x) : n \in \mathbb{Z}\}$.
- A point x ∈ X is periodic if fⁿ(x) = x for some n ≥ 1 (in which case we say x has period n, or x is n-periodic). A point x ∈ X is fixed if f(x) = x.

Example: Angle Doubling

Let
$$X = \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$$
, and let $f = E_2 : x \mapsto = 2x \pmod{1}$.

Properties:

- "*Chaotic*": Points that are arbitrarily close together become far apart after sufficiently many iterations
- Periodic points of E_2 are dense in \mathbb{S}^1
- Topologically transitive: there is a point $x \in \mathbb{S}^1$ with a dense forward orbit.
- Measure-preserving with respect to Lebesgue measure: $\lambda(A) = \lambda \left(E_2^{-1}(A) \right).$

Two orbits:

- $\mathcal{O}^+(0.11) = \{0.11, 0.22, 0.44, 0.88, 0.76, 0.52, 0.04, \ldots\}$
- $\mathcal{O}^+(0.12) = \{0.12, 0.24, 0.48, 0.96, 0.92, 0.84, 0.68, \ldots\}$

Example: 2-Shift

Let $X = \Omega_2^+ = \{0, 1\}^{\mathbb{N}_0}$, and let $f = \sigma : \Omega_2^+ \to \Omega_2^+$ be defined by $\sigma(\omega)_i = \omega_{i+1}$ (ie. the sequence ω gets shifted to the left by 1, and the 0th letter gets deleted).

Metric on Ω_2^+ :

$$d(\omega,\omega')=2^{-\min\left\{i:\,\omega_i\neq\omega_i'\right\}}$$

Open balls in Ω_2^+ are cylinders: for $\alpha_0, \ldots, \alpha_n \in \{0, 1\}$:

$$C_{\alpha_0\dots\alpha_n} = \left\{ \omega \in \Omega_2^+ : \omega_i = \alpha_i \,\forall \, 0 \le i \le n \right\}$$

General cylinders: for $\alpha_0, \ldots, \alpha_n \in \{0, 1\}$ and nonnegative integers $j_0 < j_1 < \cdots < j_n$:

$$C^{j_0\dots j_n}_{\alpha_0\dots\alpha_n} = \{\omega \in \Omega : \omega_{j_k} = \alpha_{j_k} \forall 0 \le k \le n\}$$

Example: 2-shift

Orbit example:

$$\begin{split} & \omega = 00011100001010001111\ldots, \\ & \sigma(\omega) = 0011100001010001111\ldots, \\ & \sigma^2(\omega) = 011100001010001111\ldots, \\ & \sigma^3(\omega) = 11100001010001111\ldots, \\ & \sigma^4(\omega) = 1100001010001111\ldots, \end{split}$$

Easy to show σ is continuous.

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

æ

Introduction Examples Hyperbolic Dynamics

Factors, conjugacies, and isomorphisms

Definition

- Suppose (X, f) and (Y, g) are topological dynamical systems, and h: X → Y is a surjective continuous map so that h ∘ f = g ∘ h. Then (Y, g) is a topological factor of (X, f). If h is a homeomorphism, then (X, f) and (Y, g) are topologically conjugate.
- Suppose (X, f) and (Y, g) are measurable dynamical systems, with X and Y finite-measure, and h: X → Y is a measurable and measure-preserving map that restricts to a bijection X' → Y', with X' ⊆ X and Y' ⊆ Y full-measure, so that h ∘ f = g ∘ h. Then (X, f) and (Y, g) are measure-theoretically isomorphic (or just isomorphic if the context is clear).

< ロ > < 同 > < 回 > < 回 >

Angle doubling and 2-shift

Suppose we express the angle doubling map as doubling numbers expressed in binary:

 $\begin{array}{l} 0.11 = 0.00011100001010001111\ldots_2\\ E_2(0.11) = 0.22 = 0.0011100001010001111\ldots_2\\ E_2^2(0.11) = 0.44 = 0.011100001010001111\ldots_2\\ E_2^3(0.11) = 0.88 = 0.11100001010001111\ldots_2\\ E_2^4(0.11) = 0.76 = 0.1100001010001111\ldots_2 \end{array}$

Comparing this to the example orbit from 2 slides ago, the formal string of 0s and 1s are the same!

Introduction Examples Hyperbolic Dynamics

Angle doubling and 2-shift

Define $h: \Omega_2^+ \to \mathbb{S}^1$ sending $\omega = \omega_0 \omega_1 \omega_2 \ldots \mapsto 0.\omega_0 \omega_1 \omega_2 \ldots_2$. With the topology on Ω_2^+ , h is surjective and continuous, and as we saw, $h \circ E_2 = \sigma \circ h$. So (\mathbb{S}^1, E_2) is a factor of (Ω_2^+, σ) .

Let $\mu:\mathcal{B}\left(\Omega_{2}^{+}
ight)
ightarrow\left[0,1
ight]$ be determined by

$$\mu\left(C_{\alpha_0\dots\alpha_n}^{j_0\dots j_n}\right) = 2^{-n}$$

Then μ is an example of a *Bernoulli probability measure* on Ω_2^+ .

Let $X' \subseteq \Omega_2^+$ be the set of strings in Ω_2^+ that do not end in a tail of all 0s or all 1s. Since μ is non-atomic and X' is countable, $\mu(X') = 0$. Note $\lambda(h(X')) = 0$.

Can show *h* is measurable and measure-preserving, so (\mathbb{S}^1, E_2) and (Ω_2^+, σ) are measure-theoretically isomorphic.

Setting of Hyperbolic Dynamics

Suppose *M* is an *n*-dimensional $(n \ge 2)$ C^1 Riemannian manifold (ie. the tangent vector space at each point $x \in M$ has an inner product, and this inner product varies smoothly over *M*).

Now suppose $f : M \to M$ is a C^r local diffeomorphism for some $r \ge 1$ (meaning for every $x \in M$, there is an open neighborhood $U \subset M$ so that $f|_U : U \to f(U)$ is a diffeomorphism).

Hyperbolic Sets

Definition

Let $U \subset M$ be open so that $f: U \to f(U)$ is a diffeomorphism. A compact *f*-invariant set $\Lambda \subset U$ is a **hyperbolic set** if there is a $\lambda \in (0, 1), C > 0$, and a splitting $T_x M = E^s(x) \oplus E^u(x)$ at each tangent plane for $x \in \Lambda$ so that:

$$||Df_x^n v|| \le C\lambda^n ||v|| \text{ for every } v \in E^s(x), n \ge 0;$$

$$||Df_x^{-n}v|| \le C\lambda^n ||v|| \text{ for every } v \in E^u(x), n \ge 0;$$

3
$$Df_x(E^s(x)) = E^s(f(x))$$
 and $Df_x(E^u(x)) = E^u(f(x))$.

NOTE: Λ may not be a submanifold of M (often not locally homeomorphic to \mathbb{R}^n at *any* point $x \in \Lambda$).

Smale Horseshoe

Let $S \subset \mathbb{R}^2$ be a square with two sides capped by half discs, and $f: S \to S$ a diffeomorphism onto its image, stretching S vertically, contracting horizontally, and folding in half, like so:

Notice only B and D have images intersecting the central square. So if a point is to remain in the square, it has to always stay inside of sets B and D.

Smale Horseshoe

Iterating the horseshoe map $f: S \rightarrow S$ forward twice more, we get a progressively more "coiled" horseshoe.

Taking preimage $f^{-1}(B)$, we get two thin horizontal rectangles: one inside *B*, and one inside *D*. Ditto $f^{-1}(D)$.

Introduction Examples Hyperbolic Dynamics

Smale Horseshoe

The intersection of all forward images of B and D form a Cantor set, as does the intersection of all preimages.

The resulting set $\Lambda = \bigcap_{n=-\infty}^{\infty} f^n(B) \cup f^n(D)$ is a product of Cantor sets, and a hyperbolic set in S. Note $f : \Lambda \to \Lambda$ is a bijection.

Introduction Examples Hyperbolic Dynamics

Smale Horseshoe

In the case of the horseshoe, the contracting directions $E^{s}(x)$ are horizontal lines at each point (notice if two points in Λ share a horizontal coordinate, they grow closer together), and the expanding directions $E^{u}(x)$ are vertical lines (if two points share a vertical coordinate, they grow closer together *in backwards time*).

Smale Horseshoe

Much like the expanding map $E_2 : \mathbb{S}^1 \to \mathbb{S}^1$, the horseshoe $f : \Lambda \to \Lambda$ can be encoded into a *symbolic* system: the *full shift* $\Omega_2 := \{0,1\}^{\mathbb{Z}}$, with map $\sigma : \Omega_2 \to \Omega_2$ given by $\sigma(\omega)_i = \omega_{i+1}$.

In this example, p has symbolic representation $\cdots 000 \cdots$, s has symbolic representation $\cdots 111 \cdots$, and r has symbolic representation $\cdots 00100 \cdots$. (p stays in B and s stays in D, but r is in D once and otherwise stays in B.)

Smale Solenoid

Let $M = \mathbb{S}^1 \times \mathbb{D}^2$: the solid torus. Define the map $f : M \to M$ by

$$f(\varphi, x, y) = \left(2\varphi, \alpha x + \frac{1}{2}\cos 2\pi\varphi, \alpha y + \frac{1}{2}\sin 2\pi\varphi\right)$$

for some fixed $\alpha \in (0, 1/2)$. Then f is a diffeomorphism onto its image, a solid torus stretched by a factor of 2, contracted by a factor of α , and twisted inside the original solid torus:

Smale Solenoid

The closed invariant set $\Lambda = \bigcap_{n \ge 1} f^n(M)$ is known as the *Smale-Williams solenoid*. Note $f|_{\Lambda} : \Lambda \to \Lambda$ is bijective.

The solenoid is a hyperbolic set, in fact a hyperbolic *attractor* (meaning the orbit of every point $p \in M$ approaches a sequence of points in Λ , i.e. $d(f^n(p), \Lambda) \rightarrow 0$).

Locally, the solenoid is a product of a Cantor set with an open interval.

The stable subspaces $E^{s}(p)$ are parallel to the 2-dimensional cross-sectional discs of M.

The unstable subspaces $E^{u}(p)$ are along the "open intervals" in the *local product structure* of Λ .

Analyzing the solenoid

Define $\Phi = \left\{ (\varphi_n)_{n=0}^{\infty} \in (\mathbb{S}^1)^{\mathbb{N}_0} : \varphi_i = 2\varphi_{i+1} \pmod{1} \right\}$. Then Φ is a closed subgroup of the additive topological group $(\mathbb{S}^1)^{\mathbb{N}_0}$.

The map $\alpha : \Phi \to \Phi$ given by $\alpha(\varphi_0, \varphi_1, \ldots) = (2\varphi_0, \varphi_0, \varphi_1, \ldots)$ is a group automorphism and a homeomorphism.

Given $p \in \Lambda$, the first (angular) coordinates of the preimages $f^{-n}(p) = (\varphi_n, x_n, y_n)$ form a sequence $h(p) = (\varphi_n)_{n=0}^{\infty} \in \Phi$.

One can show $h : \Lambda \to \Phi$ is a homeomorphism, and $h \circ f = \alpha \circ h$. Thus (Φ, α) and (Λ, f) are topologically conjugate.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Hyperbolic Toral Automorphisms

Let
$$M = \mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1 = \mathbb{R}^2 / \mathbb{Z}^2$$
. Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, and let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be the action of A on \mathbb{R}^2 .

Since det(A) = 1, $F(\mathbb{Z}^2) = \mathbb{Z}^2$, so F descends to a well-defined map $f : \mathbb{T}^2 \to \mathbb{T}^2$, known as a *hyperbolic toral automorphism*.

Generally, if $A \in SL(n, \mathbb{Z})$ has no eigenvalues on the unit circle, then $f_A : \mathbb{T}^n \to \mathbb{T}^n$ is a hyperbolic toral automorphism.

Introduction Examples Hyperbolic Dynamics

Hyperbolic Toral Automorphisms

Eigenvalues of
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
:

• $\lambda = \left(3 + \sqrt{5}\right)/2 > 1$, in direction of $v_{\lambda} := \left(\left(1 + \sqrt{5}\right)/2, 1\right)$

• $1/\lambda$, in direction of $v_{1/\lambda} := \left(\left(1 - \sqrt{5} \right)/2, 1 \right)$

Hyperbolic Toral Automorphisms

Note
$$df_p: T_p\mathbb{T}^2 \to T_{f(p)}\mathbb{T}^2$$
 has matrix expression $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

Identify $T_p\mathbb{T}^2$ with \mathbb{R}^2 at every $p \in \mathbb{T}^2$; then $E^s(p)$ and $E^u(p)$ are the eigenspaces spanned by $v_{1/\lambda}$ and v_{λ} respectively.

Thus all of \mathbb{T}^2 is a hyperbolic set.

If $f: M \to M$ is a diffeomorphism of a Riemannian manifold for which all of M is hyperbolic, then f is known as an *Anosov* diffeomorphism. Hyperbolic toral automorphisms are examples of Anosov diffeomorphisms.

Adapted Metrics

Recall definition of a hyperbolic set $\Lambda \subset M$:

Definition

Let $U \subset M$ be open so that $f : U \to f(U)$ is a diffeomorphism. A compact *f*-invariant set $\Lambda \subset U$ is a **hyperbolic set** if there is a $\lambda \in (0,1)$, C > 0, and a splitting $T_x M = E^s(x) \oplus E^u(x)$ at each tangent plane for $x \in \Lambda$ so that:

2
$$\|Df_x^{-n}v\| \leq C\lambda^n \|v\|$$
 for every $v \in E^u(x)$, $n \geq 0$;

3
$$Df_x(E^s(x)) = E^s(f(x))$$
 and $Df_x(E^u(x)) = E^u(f(x))$.

Adapted Metrics

Theorem

If Λ is a hyperbolic set of $f: M \to M$ with constants C and λ , then for every $\varepsilon > 0$ there is a C^1 Riemannian metric $\langle \cdot, \cdot \rangle'$ in a neighborhood of Λ , called the adapted metric or Lyapunov metric, with respect to which f is hyperbolic and satisfies the conditions of hyperbolicity with C' = 1, $\lambda' = \lambda + \varepsilon$, and the subspaces $E^s(x)$ and $E^u(x)$ are ε -orthogonal. That is, $\langle v^s, v^u \rangle' < \varepsilon$ for all unit vectors $v^s \in E^s(x)$, $v^u \in E^u(x)$, and all $x \in \Lambda$. Invariant cones and neighborhoods of Λ

Given $\varepsilon > 0$, define the sets

$$\Lambda_{\varepsilon}^{s} = \{x \in U : \operatorname{dist} (f^{n}(x), \Lambda) < \varepsilon \,\forall \, n \in \mathbb{N}_{0}\},\$$

$$\Lambda^{u}_{\varepsilon} = \left\{ x \in U : \operatorname{dist} \left(f^{-n}(x), \Lambda \right) < \varepsilon \; \forall \; n \in \mathbb{N}_{0} \right\}$$

Note $E^{s}(x)$ and $E^{u}(x)$ vary continuously, so can be extended to a neighborhood $U \supset \Lambda$, so $T_{x}U = \tilde{E}^{s}(x) \oplus \tilde{E}^{u}(x)$ for every $x \in U$.

Given $x \in U$, $v \in T_x M$, suppose $v = v^s + v^u$, $v^s \in \tilde{E}^s(x)$, $v^u \in \tilde{E}^u(x)$. Define the *invariant stable and unstable cones of size* $\alpha > 0$:

$$\begin{aligned} \mathcal{K}^{s}_{\alpha}(x) &= \left\{ v \in T_{x}M : \|v^{u}\| \leq \alpha \|v^{s}\| \right\}, \\ \mathcal{K}^{u}_{\alpha}(x) &= \left\{ v \in T_{x}M : \|v^{s}\| \leq \alpha \|v^{u}\| \right\}. \end{aligned}$$

Local Stable and Unstable Submanifolds

Theorem (Stable/Unstable Manifolds)

Let $f : M \to M$ be a C^1 diffeomorphism of a differentiable manifold and let $\Lambda \subset M$ be a hyperbolic set of f with constant f. Assume M has a Lyapunov metric for f. Then there are $\varepsilon > 0$, $\delta > 0$ such that for every $x^s \in \Lambda^s_{\delta}$ and every $x^u \in \Lambda^u_{\delta}$,

• the sets (known as lccal unstable and local stable manifolds)

$$\begin{split} & W_{\varepsilon}^{u}(x^{u}) = \left\{ y \in M : \operatorname{dist}\left(f^{-n}\left(x^{s}\right), f^{-n}(y)\right) < \varepsilon \,\,\forall \,\, n \in \mathbb{N}_{0} \right\}, \\ & W_{\varepsilon}^{s}(x^{s}) = \left\{ y \in M : \operatorname{dist}\left(f^{n}\left(x^{s}\right), f^{n}(y)\right) < \varepsilon \,\,\forall \,\, n \in \mathbb{N}_{0} \right\} \end{split}$$

are C¹ embedded discs;

•
$$T_{y^{u/s}}W^{u/s}_{\varepsilon}(x^{u/s}) = E^{u/s}(x^{u/s})$$
 for every $y^{u/s} \in W^{u/s}_{\varepsilon}(x^{u/s})$;

Local Stable and Unstable Submanifolds

Theorem (Stable/Unstable Manifolds) (continued)

- $f(W^s_{\varepsilon}(x^s)) \subset W^s_{\varepsilon}(f(x^s))$ and $f^{-1}(W^u_{\varepsilon}(f(x^u))) \subset W^u_{\varepsilon}(x^u)$;
- if $y^s, z^s \in W^s_{\varepsilon}(x^s)$, then $d^s(f(y^s), f(z^s)) < \lambda d^s(y^s, z^s)$, where d^s is the distance along $W^s_{\varepsilon}(x^s)$;
- if $y^{u}, z^{u} \in W^{u}_{\varepsilon}(x^{u})$, then $d^{u}(f^{-1}(y^{u}), f^{-1}(z^{u})) < \lambda d^{u}(y^{u}, z^{u})$, where d^{u} is the distance along $W^{u}_{\varepsilon}(x^{u})$;
- if $0 < \operatorname{dist}(x^s, y) < \varepsilon$ and $\exp_{x^s}^{-1}(y) \in K^u_{\delta}(x^s)$, then $\operatorname{dist}(f(x^s), f(y)) > \lambda^{-1} \operatorname{dist}(x^s, y)$;
- if $0 < \operatorname{dist}(x^u, y) < \varepsilon$ and $\exp_{x^u}^{-1}(y) \in K^s_{\delta}(x^u)$, then $\operatorname{dist}(f(x^u), f(y)) < \lambda \operatorname{dist}(x^s, y)$;
- if $y^{s} \in W^{s}_{\varepsilon}(x^{s})$, then $W^{s}_{\alpha}(y^{s}) \subset W^{s}_{\varepsilon}(x^{s})$ for some $\alpha > 0$, and if $y^{u} \in W^{u}_{\varepsilon}(x^{u})$, then $W^{u}_{\beta}(y^{u}) \subset W^{u}_{\varepsilon}(x^{u})$ for some $\beta > 0$.

Local Maximality and Local Product Structure

Definition

- A hyperbolic set Λ ⊂ M of f : U → M is locally maximal if there is an open set V such that Λ ⊂ V ⊂ U and Λ = ⋂_{n∈ℤ} fⁿ(V).
- A has *local product structure* if there are sufficiently small $\varepsilon > 0$ and $\delta > 0$ such that:
 - for all x, y ∈ Λ, W^s_ε(x) ∩ W^u_ε(y) consists of at most one point, which belongs to Λ; and,
 - Of r x, y ∈ Λ with d(x, y) < δ, the intersection consists of exactly one point [x, y] = W^s_ε(x) ∩ W^u_ε(y), and the intersection is transverse.

Local Maximality and Local Product Structure

If Λ has local product structure, then there is a neighborhood U(x) of every $x \in \Lambda$ so that

$$U(x) \cap \Lambda = \{ [y, z] : y \in U(x) \cap W^s_{\varepsilon}(x), z \in U(x) \cap W^u_{\varepsilon}(x) \}.$$

Theorem

A hyperbolic set Λ is locally maximal if and only if it has a local product structure.

Global Stable and Unstable Submanifolds

Global analogue of stable/unstable submanifolds for points $x \in \Lambda$:

$$\begin{aligned} W^s(x) &:= \left\{ y \in M : d\left(f^n(x), f^n(y)\right) \to 0 \text{ as } n \to \infty \right\}, \\ W^u(x) &:= \left\{ y \in M : d\left(f^{-n}(x), f^{-n}(y)\right) \to 0 \text{ as } n \to \infty \right\}. \end{aligned}$$

Theorem

There is an $\varepsilon_0 > 0$ such that for every $\varepsilon \in (0, \varepsilon_0)$, for every $x \in \Lambda$,

$$W^{s}(x) = \bigcup_{n=0}^{\infty} f^{-n} \left(W^{s}_{\varepsilon} \left(f^{n}(x) \right) \right), \text{ and}$$
$$W^{u}(x) = \bigcup_{n=0}^{\infty} f^{n} \left(W^{u}_{\varepsilon} \left(f^{-n}(x) \right) \right).$$

< A >

An Anosov diffeomorphism is a diffeomorphism $f : M \to M$ of a connected differentiable manifold for which M is a hyperbolic set.

Suppose N is a simply-connected nilpotent Lie group, Γ a uniform discrete subgroup of N. Then $M := N/\Gamma$ is a *nilmanifold*.

If $\overline{f}: N \to N$ is an automorphism of N that preserves Γ and whose derivative at the identity is hyperbolic, then the induced map $f: M \to M$ is Anosov.

Conjecture: Up to finite coverings, all Anosov diffeomorphisms are topologically conjugate to automorphisms of nilmanifolds.

The global stable and unstable manifolds $W^{s}(x)$ and $W^{u}(x)$ of an Anosov diffeomorphisms form stable and unstable *foliations* of the manifold M.

For $M = \mathbb{T}^2$, $f : \mathbb{T}^2 \to \mathbb{T}^2$ generated by linear hyperbolic map $A = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$, the unstable leaves of the foliation (i.e. the global stable submanifolds) are curves parallel to the eigendirections of $\lambda = (3 + \sqrt{5})/2$. Stable leaves are curves parallel to the eigendirections of $1/\lambda$.

A point $x \in M$ is *nonwandering* if for every neighborhood $U \ni x$ there is an $n \ge 1$ so that $f^n(U) \cap U \ne \emptyset$. The set of all nonwandering points is denoted NW(f).

A diffeomorphism $f \in \text{Diff}^1(M)$ is structurally stable if for every $\varepsilon > 0$, there is a neighborhood $\mathcal{U} \subset \text{Diff}^1(M)$ of f such that for every $g \in \mathcal{U}$ there is a homeomorphism $h : M \to M$ with $h \circ f = g \circ h$ and $d_0(h, \text{Id}) < \varepsilon$.

Properties of Anosov diffeomorphisms:

- Anosov diffeomorphisms form an open (possibly empty) subset of Diff¹(M).
- Anosov diffeomorphisms are structurally stable.
- The set of periodic points is dense in NW(f).

Theorem

Let $f : M \to M$ be an Anosov diffeomorphism. The following are equivalent:

- NW(f) = M;
- every unstable manifold is dense in M;
- every stable manifold is dense in M;
- f is topologically transitive (i.e. there exists a dense orbit);
- f is topologically mixing (i.e. for every $U, V \subset M$, there is $N \in \mathbb{N}$ such that $f^n(U) \cap V \neq \emptyset$ for $n \ge N$).

Conjecture: These statements hold for *every* Anosov diffeomorphism.

Markov Partitions

Anosov diffeomorphisms are often encoded into a symbolic system via a *Markov partition*.

Definition

A **Markov partition** \mathcal{P} of a manifold M for an invariant subset Λ of a diffeomorphism $f : M \to M$ is a (typically finite) collection of subsets $R_i \subset M$, called *rectangles*, such that for all i, j, k:

•
$$R_i = \overline{\operatorname{int} R_i};$$

- $\operatorname{int} R_i \cap \operatorname{int} R_j = \emptyset$ if $i \neq j$;
- if $f^m(\operatorname{int} R_i) \cap \operatorname{int} R_j \cap \Lambda = \emptyset$ for some $m \in \mathbb{Z}$, and $f^n(\operatorname{int} R_j) \cap \operatorname{int} R_k \cap \Lambda \neq \emptyset$ for some $n \in \mathbb{Z}$, then $f^{m+n}(\operatorname{int} R_i) \cap \operatorname{int} R_k \cap \Lambda \neq \emptyset$.

Markov Partitions

The set of two-sided sequences of the alphabet $\{R_i\}$ gives a symbolic dynamical system, whose orbits correspond to the orbits of $f: M \to M$

For $M = \mathbb{S}^1$, $f = E_2$, even though f is not hyperbolic, the partition $R_0 = [0, 1/2]$, $R_1 = [1/2, 1]$ is a Markov partition: the binary-expanded point 0.0001110000101...₂ $\in \mathbb{S}^1$ gets sent first to R_0 in the first 3 iterations of E_2 , then R_1 for the next three iterations, then R_0 for the next four, etc.

Theorem

Every Anosov diffeomorphism admits a Markov partition.

▲ 同 ▶ → 三 ▶

Introduction Examples Hyperbolic Dynamics

Markov Partitions

æ

э

▲ 母 ▶ ▲ 臣

Thank You!

References:

- Katok, A. & Hasselblatt, B. (1995) *Introduction to the Modern Theory of Dynamical Systems*. Cambridge: Cambridge University Press.
- Brin, M. & Stuck, G. (2015) *Introduction to Dynamical Systems*. Cambridge: Cambridge University Press.