Foliations with singularities

A foliation with singularities *F* of a 2-manifold *M*, for our purposes, is a foliation of *M* where there are finitely many points x₁,..., x_l ∈ *M* at which some number p = p(x_k) = p_k ≥ 3 of the leaves meet (these are the prongs of the singularity):

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Pseudo-Anosov Homeomorphisms

- A homeomorphism f : M → M of a 2-manifold M is pseudo-Anosov if there are two f-invariant foliations with singularities, F^s and F^u, for which:
 - the foliations share the same singularities, and the same number of prongs;
 - the foliations intersect transversally away from the singularities;
 - 3. there is a $\lambda > 1$ such that for x, y in the same \mathcal{F}^{s} -leaf, $\rho^{s}(f(x), f(y)) = \lambda^{-1}\rho^{s}(x, y)$, and for x, y in the same \mathcal{F}^{u} -leaf, $\rho^{u}(f(x), f(y)) = \lambda \rho^{u}(x, y)$;

where ρ^s and ρ^u are the distances in the \mathcal{F}^s and \mathcal{F}^u foliations with respect to a Riemannian metric on M that has a density vanishing at the singularities.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Pseudo-Anosov Homeomorphisms

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Proof of Main Result

The blue curves represent the stable foliation, along which nearby points contract; and the red curves represent the unstable foliation, along which nearby points expand.

Nielsen-Thurston Classification

Theorem (Nielsen, Thurston)

Any homeomorphism on a compact topological manifold M is isotopic to a map f that is one of the following:

- f is periodic: there is a positive integer m with f^m = Id;
 - EG. $f = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} : \mathbb{T}^2 \to \mathbb{T}^2;$
- f is reducible: there is a closed curve on M that is f-invariant (these are also known as Dehn twists);
 - EG. $f = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} : \mathbb{T}^2 \to \mathbb{T}^2;$
- f is pseudo-Anosov;
 - EG. $f = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} : \mathbb{T}^2 \to \mathbb{T}^2$.

The pseudo-Anosov maps form an open set in the homeomorphisms of M, and exhibit the most interesting dynamical properties.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Examples from Anosov maps

- An Anosov diffeomorphism is a pseudo-Anosov homeomorphism with no singularities.
- ► Linear Anosov maps on T² lift to pseudo-Anosov maps on higher-genus surfaces via branched coverings (may be necessary to lift powers of Anosov maps).

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

▶ Orientable genus-2 surface S₂ can be horizontally split into two cylinders C₁ and C₂, each of which admits a Dehn twist T₁ and T₂ resp. Note dT₁ = (¹₀¹₁) on C₁, and dT₂ = (¹₀²₁) on C₂, away from the identified vertex (singularity).

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

► The Dehn twists T₁ and T₂ can be composed to form a horizontal "multi-twist" T := T₁² ∘ T₂, whose differential away from the vertex is (¹₀ ²₁):

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

► A similar vertical multi-twist S can be defined on the cylinder made from the red and blue squares, and the cylinder made from the green square. The corresponding differential is (¹/₂ ⁰/₁).

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

- $T \circ S$ has the constant differential $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$.
- ► Eigenvalues are $3 2\sqrt{2}$ and $3 + \sqrt{2}$, with resp. eigenvectors $\begin{pmatrix} 1-\sqrt{2} \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1+\sqrt{2} \\ 1 \end{pmatrix}$.
- ► This is a pseudo-Anosov map whose stable/unstable foliations are parallel to the eigendirections for 3 2√2 and 3 + 2√2, resp. The vertex is a 6-pronged singularity (unstable prongs illustrated:)

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

- $T \circ S$ has the constant differential $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$.
- Eigenvalues are $3 2\sqrt{2}$ and $3 + \sqrt{2}$, with resp. eigenvectors $\begin{pmatrix} 1-\sqrt{2} \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1+\sqrt{2} \\ 1 \end{pmatrix}$.
- ► This is a pseudo-Anosov map whose stable/unstable foliations are parallel to the eigendirections for 3 2√2 and 3 + 2√2, resp. The vertex is a 6-pronged singularity (unstable prongs illustrated:)

▶ In fact, this map is the lift of the linear Anosov map on \mathbb{T}^2 induced by $\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Properties

Suppose $f: M \to M$ is a pseudo-Anosov homeomorphism with expansion factor $\lambda > 1$.

- There is a Riemannian metric on *M* inducing a volume ν under which *f* is invariant. Furthermore, if *U* is a neighborhood of a singularity x_i ∈ *M* and φ : U → ℝ² is a coordinate chart, ν has a density with respect to φ_{*}⁻¹(Leb) vanishing at x_i.
- f admits a finite Markov partition, with respect to which f is Bernoulli.
- If x ∈ M is not a singularity, then f is smooth at x and there are orthonormal bases of T_xM and T_{f(x)}M with respect to which df_x has the matrix form (^λ₀ 0/₀).

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Behavior at Singularities

► The orthonormal basis are tangent vectors of the stable and unstable leaves. Along different prongs of the singularities, matrix form of *df* approaches different rotations of (^λ₀ ⁰_{λ⁻¹}). In particular, *f* is not differentiable at the singularities.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Simplifying assumptions

Since f is a homeomorphism, f permutes the singularities, so we may assume singularities are fixed points. Furthermore, we may assume that near singularities, the open sectors between the stable prongs are invariant under f (see the colored sections below).

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Slow-down procedure

Each open sector is homeomorphic to the right half-plane, where in coordinates we have s₁ = const are the stable leaves, and s₂ = const are unstable leaves.

In these coordinates, the map has the form

$$f(s_1, s_2) = (\lambda s_1, \lambda^{-1} s_2) \tag{1}$$

which is the time-1 map of the flow given by

$$\dot{s}_1 = s_1 \log \lambda, \quad \dot{s}_2 = -s_2 \log \lambda.$$

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Proof of Main Result

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Slow-down procedure

- For each singularity x_i, choose coordinate ball of radius r_i > 0 in which f(s₁, s₂) = (λs₁, λ⁻¹s₂) in each sector. Assume r_i = r_j whenever x_i and x_j have the same number of prongs.
- ▶ Let $0 < \tilde{r_i} < r_i$. Suppose x_i has p prongs. Define a "slow-down" function $\Psi_p : [0, \infty) \to \mathbb{R}$ so that:

1.
$$\Psi_{p}(u) = C_{p}u^{(p-2)/p}$$
 for $u \leq \tilde{r}_{i}^{2}$, where $C_{p} = (p/2)^{(2p-4)/p}$;
2. Ψ_{p} is C^{∞} except at 0;
3. $\dot{\Psi}_{p}(u) \geq 0$ for $u > 0$;
4. $\Psi_{p}(u) = 1$ for $u \geq r_{i}^{2}$.

Let G_p be the time-1 map of the flow given by the vector field defined by

$$\begin{cases} \dot{s}_1 = (\log \lambda) s_1 \Psi_p \left(s_1^2 + s_2^2 \right), \\ \dot{s}_2 = -(\log \lambda) s_2 \Psi_p \left(s_1^2 + s_2^2 \right). \end{cases}$$
(2)

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Proof of Main Result

(ロ)、

Slow-down procedure

▶ In coordinates, for $|(s_1, s_2)| \ge r_i$, we have $G_p(s_1, s_2) = f(s_1, s_2)$, so we define $g : M \to M$ in coordinates by

$$g(x) = \begin{cases} G_p(s_1, s_2) & \text{if } x = (s_1, s_2) \text{ is near a singularity,} \\ f(x) & \text{otherwise.} \end{cases}$$

- Compare to the Katok map G : T² → T², which is a toral automorphism that has similarly been slowed down at the origin.
 - After slow-down, the Katok map is conjugated with a homeomorphism to make the map Lebesgue-preserving ("blows up" trajectories near the origin).
- For smooth pseudo-Anosov maps, we instead show g preserves the measure Ψ_p(s₁² + s₂²)⁻¹ds₁ ∧ ds₂.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Pseudo-Anosov Diffeomorphisms

Theorem (Gerber and Katok, 1982)

- ► The map g is a C[∞] nonuniformly hyperbolic diffeomorphism of M.
- g is topologically conjugate to the pseudo-Anosov map f via a homeomorphism that is isotopic to the identity.
- This conjugacy is a homeomorphism only, and cannot be made C¹.
- In every neighborhood of the singularities, g is real analytic, and is Bernoulli with respect to an invariant measure given by a smooth positive density.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Equilibrium states and geometric potentials

• Let $\varphi : M \to \mathbb{R}$ be continuous. A probability measure μ_{φ} is an **equilibrium measure** for φ if

$$P_g(\varphi) = h_{\mu_{\varphi}}(g) + \int_M \varphi \, d\mu_{\varphi},$$

where $h_{\mu_{\varphi}}(g)$ is the metric entropy of g and $P_g(\varphi)$ is the topological pressure of φ :

$$P_g(\varphi) = \sup_{\mu \in \mathcal{M}(g)} \left\{ h_\mu(g) + \int_M \varphi \, d\mu \right\}$$

 We consider equilibrium states of the geometric t-potential

$$\varphi_t(x) = -t \log \left| dg \right|_{E^u(x)} \right|.$$

We denote $\mu_t := \mu_{\varphi_t}$.

• Observe that μ_0 is a measure of maximal entropy.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Decay of correlations and CLT

f has exponential decay of correlations with respect to a measure µ and a class of functions H on M if there exists κ ∈ (0, 1) s.t. for any h₁, h₂ ∈ H,

$$\left|\int (h_1 \circ f^n) h_2 d\mu - \int h_1 d\mu \int h_2 d\mu\right| \leq C \kappa^n$$

for some $C = C(h_1, h_2) > 0$.

f satisfies the Central Limit Theorem (CLT) if for any *h* ∈ H s.t. *h* ≠ *h*′ ∘ *f* − *h*′, *h*′ ∈ H, there is σ > 0 s.t.

$$\lim_{n\to\infty} \mu \left\{ \sqrt{n} \left(\frac{1}{n} S_n(h) - \mathbb{E}(h) \right) < t \right\}$$
$$= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^t e^{-\tau^2/2\sigma^2} d\tau$$

where $S_n(h) = \sum_{i=0}^{n-1} h(f^i(x))$ and $\mathbb{E}(h) = \int_M h \, d\mu$.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Main Result

Theorem (V. 2020)

Let $g : M \to M$ be a pseudo-Anosov diffeomorphism of a compact orientable manifold M (as in the preceding construction).

- 1. For any $t_0 < 0$, we may choose radii $r_i > 0$ in the construction of g s.t. for $t \in (t_0, 1)$, there is a unique equilibrium measure μ_t for the geometric potential φ_t . Further:
 - μ_t satisfies CLT with respect to a class of functions containing all Hölder functions;
 - μ_t has exponential decay of correlations with respect to this class of functions, and is hence mixing;
 - the map is Bernoulli with respect to μ_t ;
 - the pressure function $t \mapsto P_g(\varphi_t)$ is real-analytic on $(t_0, 1)$.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Main Result (cont)

- 2. For t = 1, there are two classes of equilibrium measures associated to φ_1 :
 - convex combinations of the Dirac measures δ_{xi} centered at the singularities, and
 - a unique invariant SRB measure.
- 3. For t > 1, all equilibrium measures for φ_t are convex combinations of the measures δ_{x_i} .

This result closely mirrors a similar result (Pesin, Senti, and Zhang, 2017) about the Katok map $G : \mathbb{T}^2 \to \mathbb{T}^2$.

 Replace "convex combinations of δ_{xi}" with "the Dirac measure at the origin". Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Young diffeomorphisms (general idea)

- The proof of the main result relies on the technology of Young towers.
- Given g : M → M and Λ ⊂ M, let τ : Λ → N be an inducing time (often first-return time) and let G = g^τ : Λ → Λ be the induced map, defined by G(x) = g^{τ(x)}(x).
- The map g : M → M is a Young diffeomorphism with base Λ ⊂ M if Λ has hyperbolic product structure, and G satisfies certain "nice" properties, including:
 - Stable (resp. unstable) leaves are invariant under G (resp. G⁻¹);
 - G (resp. G⁻¹) contracts points in the same stable (resp. unstable) leaf as n→∞ (resp. n→-∞);
 - τ is integrable on some unstable leaf;
 - Distortion estimates are bounded (more on this later).

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Thermodynamics of Young's diffeomorphisms

Let g : M → M be a C^{1+ε} Young diffeomorphism of a compact Riemannian manifold M with base Λ ⊂ M and first return time τ : Λ → N. Under certain arithmetic and combinatorial conditions:

Theorem (Pesin, Senti, Zhang 2016)

- ► \exists an equilibrium measure μ_1 for the potential φ_1 , which is the unique SRB measure;
- ► ∃ $t_0 < 0$ s.t. for $t \in (t_0, 1)$, there is a unique equilibrium measure μ_t for φ_t on $Y := \{g^k(x) : x \in \Lambda, 0 \le k \le \tau(x) - 1\};$
- For t ∈ (t₀, 1), the measure µ_t has exponential decay of correlations and the CLT with respect to a class of functions ℋ containing all Hölder functions on M.

Theorem (Shahidi, Zelerowicz 2018)

If $g: M \to M$ is mixing, then (M, g, μ_t) is Bernoulli.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Constructing Tower

- ▶ Let \mathcal{P} be a Markov partition for g, and let $P \in \mathcal{P}$ be a rectangle that does not contain any singularity.
- Let $\tau(x)$ be first return time of x to P.
- For x ∈ P, let γ^s(x) and γ^u(x) be the connected component of the intersection of the stable and unstable leaves with P.
- For x with τ(x) < ∞, let U^u(x) ⊆ γ^u(x) be an open interval containing x, and

$$A^u(x) = \{y \in U^u(x) : y \in \partial P \text{ or } \tau(y) = \infty\}.$$

Assume $U^{u}(x)$ is small enough s.t. $\tau|_{U^{u}(x)\setminus A^{u}(x)} \equiv \text{const } \forall x \in P \text{ w} / \tau(x) < \infty.$ \blacktriangleright Define the "stable strips":

$$\Lambda^{s}(x) = \bigcup_{y \in U^{u}(x) \setminus A^{u}(x)} \gamma^{s}(y).$$

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Proof of Main Result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Constructing Tower

► We get countable collection $\{\Lambda_i^s\}_{i\geq 1} \le \tau/\tau \mid_{\Lambda_i^s} \equiv \tau_i \in \mathbb{N}$. Define $\Lambda = \bigcup_{i\geq 1} \Lambda_i^s$.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Proof of Main Result

Theorem (V. 2020)

The smooth pseudo-Anosov diffeomorphism $g : M \to M$ is a Young's diffeomorphism with tower base Λ .

Bounded Distortion

Most properties of Young diffeomorphisms are easy to verify, and follow from corresponding properties of pseudo-Anosov diffeomorphisms. The one tricky property is *bounded distortion*:

Lemma

There exist c > 0 and $\kappa \in (0, 1)$ such that for all $n \ge 0$, $x \in \Lambda$ and $y \in \gamma^{s}(x)$, we have

$$\left|\log\frac{\left|dG|_{E^u(G^n(x))}\right|}{\left|dG|_{E^u(G^n(y))}\right|}\right| \leq c\kappa^n.$$

This bound is easy to show outside of slow-down neighborhoods. Inside the slow-down, there is a bound on how far apart log |dg_{E^u(gⁿ(x))}| and log |dg_{E^u(gⁿ(y))}| can be. (This is why we assume stable sectors are locally invariant.)

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Equilibrium state existence

► Using previous results, this gives us a unique equilibrium measure µ_t for t < 1 on the set</p>

$$Y := \left\{ g^k(x) : x \in \Lambda, 0 \le k \le \tau(x) - 1 \right\}$$

- If P̂ is another element of the Markov partition for (M, g), same argument gives us unique equilibrium measure µ̂t for t < 1 and corresponding set Ŷ.</p>
- Assuming (M, g) is topologically transitive, since µ_t(U) > 0 and µ̂_t(Û) > 0 for every open U ⊃ P, Û ⊃ P̂, and g^k(U) ∩ Û ≠ Ø for some k ≥ 1, it follows from uniqueness that µ_t = µ̂_t.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

The t = 1 case

For t = 1, we get at least one equilibrium measure, μ₁, which is an SRB measure. By the Pesin entropy formula,

$$P_{g}(\varphi_{1}) = h_{\mu_{1}}(g) - \int_{M} \log |dg|_{E^{u}(x)}| d\mu_{1}(x) = 0.$$

- If ν is any other equilibrium measure for φ₁, it also satisfies the entropy formula. So if ν has positive Lyapunov exponents, ν is an SRB measure. By uniqueness of SRB measures, ν = μ₁.
- But if ν has no positive Lyapunov exponents, then log |dg|_{E^u(x)}| = 0 ν-a.e., so ν is supported on the (finite) set of singularities. So ν = ∑ α_iδ_{xi} is a convex combination of the Dirac measures on the singularities. (If t > 1, can be similarly showed that all equilibrium states are combinations of Dirac measures.)

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

Further results

Theorem (Pesin, Senti, Zhang 2018)

The Katok map $G : \mathbb{T}^2 \to \mathbb{T}^2$ has polynomial decay of correlations with respect to its unique SRB measure:

$$\left|\int (h_1 \circ f^n) h_2 d\mu - \int h_1 d\mu \int h_2 d\mu\right| \leq C n^{-\kappa}$$

Theorem (Wang 2020)

The Katok map G has a unique equilibrium state for φ_t , for every t < 1.

Question: Is this also true for pseudo-Anosov diffeomorphisms?

Both of these results assume the exponent α > 0 in the slowing down of the Katok map is < 1/2. Our exponent is (p − 2)/p > 1/2 when p ≥ 5.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers

References

- A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces, in Séminaire Orsay, Astérisque 66-67, 1979.
- M. Gerber, A. Katok. Smooth models of pseudo-Anosov maps. Ann. scient. Éc. Norm. Sup. 4(15):173-204, 1982.
- E. Lanneau. Tell me a pseudo-Anosov. EMS Newsletter, Dec. 2017, 12-16.
- F. Ledrappier and L. S. Young. The metric entropy of diffeomorphisms, Bull. of the Amer. Math. Soc. (N.S.), 11(2):343-346, 1984.
- Y. Pesin, S. Senti, and K. Zhang. Thermodynamics of the Katok map (revised version). *Ergod. Theory Dyn. Syst.*, **39**(3):764-794, 2019
- Y. Pesin, S. Senti, and K. Zhang. Thermodynamics of towers of hyperbolic type. Trans. Amer. Math. Soc. 368(12):8519-8552. 2016.
- F. Rodriguez-Hertz, M. A. Rodriguez-Hertz, A. Tahzibi, and R. Ures, Uniqueness of SRB measures for transitive diffeomorphisms on surfaces, *Commun. Math. Phys.*, **306**(1):35-49, 2011.
- F. Shahidi, A. Zelerowicz. Thermodynamics via inducing, J. Stat. Phys, 175(2):351-383, 2019.
- D. Veconi. Thermodynamics of Smooth Models of Pseudo-Anosov Homeomorphisms. Preprint.
- T. Wang. Unique equilibrium states, large deviations and Lyapunov spectra for the Katok map. *Ergod. Theory Dyn. Syst.*, 2020.

Thermodynamics of Pseudo-Anosov Diffeomorphisms

Dominic Veconi

Pseudo-Anosov Maps

Smooth Ergodic Theory

Young Towers